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Abstract

Background: Parkinson’s disease (PD) is one of the most common neurodegenerative diseases that cause disability. Finding treat-
ment options that have no side effects can be very important.

Objectives: Therefore, in this study, the effect of S-carotene administration was investigated in the PD model of rats.

Methods: Induction of Parkinson’s disease in rats was done by injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra
(SN). After induction rat behaviour was studied using an apomorphine-induced rotation test. The SN cells’ viability was evaluated
by MTT assay and apoptosis and necrosis were measured by flow cytometry. The expressions of bax and bcl-2 genes were also studied
using RT-PCR technique. Data analysis was done by GraphPad Prism V.8 software.

Results: The results showed a positive effect of S-carotene administration in PD rats, which led to improvement in apomorphine-
induced rotation test, increased viability, and decreased apoptosis and necrosis of SN neurons. It also downregulated bax and over-
expressed bcl-2 gene expressions (P < 0.01).

Conclusions: [S-carotene has therapeutic effects in PD conditions and its mechanism of action was attributed to regulating the
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expressions of genes involved in mitochondrial apoptosis. Therefore, its study in a clinical setting is recommended.

1. Background

Parkinson’s disease (PD) is a disease of the central ner-
vous system (CNS) that affects older people frequently (1).
The death of dopaminergic cells in the substantia nigra
(SN) is primarily responsible for the disease, and patients
experience fatigue and boredom (2). The presence of Lewy
bodies in the histopathological examination of the SN is a
sign of Parkinson’s disease (3). Symptoms include muscle
stiffness, bradykinesia, akinesia, imbalance, and tremors
at rest (4). This disease is treated with drugs, such as
levodopa, amantadine, biperiden, and selegiline, which
improve the patient’s daily activities (5). However, these
drugs do not completely block neurodegeneration and are
associated with undesirable side effects such as movement
fluctuations, dyskinesia, and neurological complications
(6).

Mitochondrial-induced apoptosis has been reported
to play a vital role in the pathogenesis of PD (7), which
is associated with downregulation of anti-apoptotic bcl-2

proteins (8) and overexpression of bax pro-apoptotic pro-
teins (9). Under stressful conditions such as oxidative
stress, cells undergo autophagy and this maintains cellu-
lar homeostasis and their survival (10). However, cellu-
lar apoptosis occurs when the rate of autophagy is exces-
sive. As mentioned, one of the causes of dopaminergic cell
death in SN is oxidative stress induced by increased free
radicals and reactive oxygen species (ROS). Therefore, the
administration of antioxidants in PD as a therapeutic strat-
egy has been considered by researchers (11). [-carotene,
a precursor for vitamin A, has antioxidant properties and
protects against lipid peroxidation as a free radical scav-
enger, and can reduce oxidative stress (12). The role of vi-
tamin A in preventing lipid peroxidation in the brain has
been reported. However, there are little data on the effect
of beta-carotene on PD (13).
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2. Objectives

The current study was aimed to investigate the effect of
[-carotene administration on PD model rats and evaluate
the mechanism responsible for its therapeutic effects.

3. Methods

3.1. Materials

[-carotene was prepared from Sigma Aldrich (USA) cor-
poration. 2.05 mg/kg body -carotene was administrated
to the rats (14) for 14 days.

3.2. Animals

4 adult male rats were purchased from Pasteur Insti-
tute Tehran-Iran. The rats were kept under the standard
condition (12 h of light/dark cycle, 25 £ 2°C temperature,
and50% £10% RH).All animals were fed with the same pro-
portions of corn, wheat, barley, and pellets under the same
nutritional conditions, and free access to water was avail-
able to all. After one week, the rats were randomly divided
into four groups as follows:

(1) Control group

(2) Control group receiving 2.05 mg/kg S3-carotene

(3) PD group

(4) PD group receiving 2.05 [3-carotene

3.3. Induction of Parkinson’s Disease

3% sodium pentobarbital (45 mg/kg i.p.) was used to
anesthetize rats. Then, unilateral lesions of the left me-
dial forebrain bundle were performed, followed by stereo-
taxic injection of 6 hydroxydopamine (6-OHDA). For the
preparation of 6-OHDA, it was first dissolved in sterile 0.01%
ascorbate saline (4 pg/pl) and was injected unilaterally
(0.5 pL/min) at the coordinates described by the atlas of
Paxinos and Watson (1986). To confirm the induction of the
PD, we used the Apomorphine-induced rotation test, and
the results confirmed the PD induction in the rat model

(15).

3.4. Apomorphine-induced Rotation

If injection of 6-hydroxy dopamine causes extensive
neuronal damage in the midbrain, two to four weeks af-
ter surgery, animals show successive rotations toward the
injection site in response to Apomorphine injection. The
number of these rotations per time unit is a measure of the
severity of neuronal damage in the midbrain. To perform
the test, after14 days of 3-carotene administration, the rats
were first placed in a transparent plastic cylinder (28 cm X

38 cm), and after 15 min 0.5 mg/kg body weight Apomor-
phine hydrochloride was injected into rats. After 60 sec-
onds, the number of rotations to the injection site or vice
versa was recorded at ten-minute intervals for one hour.
Finally, the number of rotations toward the injured side
was subtracted from the opposite side, which indicated the
number of net rotations to the opposite side. Further ro-
tation indicated the severity of the lesion and the loss of
dopaminergic cells (16).

3.5. Preparation of Substantia Nigra Cells

After treating PD and control rats with S-carotene for
14 days, the rats were transferred to the operating room
and anesthetized by intraperitoneal injection of ketamine
and xylazine (5 mL ketamine and 3 mL xylazine). Then, the
striatum tissue was rapidly separated from other brain tis-
sues and placed in liquid nitrogen. After homogenizing
the tissue in saline buffer solution with pH 7.4, the sample
was centrifuged at 20,000 g for 20 minutes and stored for
molecular analysis at-20°C.

3.6. MIT Assay

Tetrazolium (Sigma, USA), which forms insoluble pur-
ple crystals of Formazan was used in the MTT assay. First,
20 mg of tissue was lysed in a PBS buffer by sonicator or
homogenizer and then centrifuged at 12000 rpm for 15
minutes at 4°C. Then, the supernatant was centrifuged at
10,000 g. Next, 50 uL of MTT solution was added to the
tubes to reach a final concentration of 2 mg/mL. The tubes
were incubated for 2 h at 37°C. After 120 minutes, 500 x
dimethyl sulfoxide was added and shaken well. The solu-
tion was poured on 96 wells plate, and after 1 h the absorp-
tion was read at 560 nm by spectrophotometry (17).

3.7. Flow Cytometry

During apoptosis, phosphatidylserine binds to the sur-
face of the cell membrane and is detected by annexin-V.
Therefore, in the present study, the Propidium iodide (PI)
staining method was used to evaluate apoptosis or necro-
sis (18). Striatum cells were washed in N-2-hydroxyethyl
piperazine-N'-2-ethane sulfonic acid (HEPES) buffer and di-
luted to 106 c/mL. Then 5 pL of FITC-labeled annexin-V
(Sigma), 10 L of Pland CD3, CD4, and CD8 cell surface anti-
genantibodies were mixed in100 pL of the cell suspension.
After 15 minutes, 400 pL of HEPES buffer was added to the
suspension to block the binding. Finally, a tube containing
stained cells and antibodies was placed in a FACS caliber
flow cytometer.
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3.8. Gene Expression Analysis

3.8.1. RNA Extraction and cDNA Synthesis

RNA Extraction Kit (Denazist, Iran) was used to extract
RNA from cerebellar tissue. The manufacturer’s instruc-
tions were applied for RNA extraction. Agarose gel and nan-
odrop were used to determine the quality and quantity of
extracted RNA, respectively.

cDNA synthesis was performed using the cDNA Syn-
thesis Kit (Easy cDNA Synthesis Kit, DenaZist, Iran) based
on the manufacturer’s instructions. Quantitative measure-
ment of DNA was performed with a nanodrop device.

3.8.2. Primers

The primers for bax and bcl-2 genes were designed us-
ing the three software Gene runner, Allele ID, Primer ex-
press software V3.0 (Applied Biosystems, USA). In the cur-
rent study, the -actin gene was used as a reference gene
(in our study we used the [-actin gene as internal control).
The sequences of primers are given in Table 1.

Table 1. The Sequence of Designed Primers

Genes Sequence [3’-5’]
Rat-bax-F AGGGTGGCTGGGAAGGC
Rat-bax-R TGAGCGAGGCGGTGAGG
Rat-bcl2-F ATCGCTCTGTGGATGACTGAGTAC
Rat-bcl2-R AGAGACAGCCAGGAGAAATCAAAC
Rat-[3-actin-F CACCATTGGCAATGAGCGGTTC
Rat-S-actinR AGGTCTTTGCGGATGTCCACGT

3.8.3. Real Time PCR

Real-time PCR (ABI 7300) was done using a master mix
and specific gene primers. The RT-PCR timing and temper-
ature program started at 95°C for 30 seconds for cDNA de-
naturation. In the next step, 40 cycles of 95°C for 5 seconds
and 60°C for 31 minutes were performed. In the next step,
the temperature cycle of 95°C for 15 seconds, 60°C for 30
seconds, and 95°C for 15 seconds were used.

3.9. Statistical Analysis

The results were shown as mean = SE. After confirm-
ing the normal distribution of data by the Kolmogorov-
Smirnov test, we used a parametric test to evaluate the
data. To compare the significant differences among the
groups, the two-way analysis of variance test and Tukey
Post hoc test were used. The level of probability for the sig-
nificant differences among the groups was considered as P
< 0.05.
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4. Results

4.1. Apomorphine Induced Rotation Test

Induction of Parkinson’s disease in rats resulted in
a significant increase in the number of rotations in the
apomorphine-induced rotation test in rats compared with
healthy controls (P< 0.0001). Although S-carotene admin-
istration for 14 days did not have a significant effect on the
number of rotations in healthy rats, a significant decrease
in the number of rotations was observed in PD rats receiv-
ing (B-carotene compared to PD rats (P < 0.05) (Figure 1).

4.2. SN Viability, Apoptosis and Necrosis

Viability of SN neurons was measured by MTT assay and
apoptosis and necrosis by flow cytometry technique, and
the results showed that induction of PD in rats led to a sig-
nificant reduction in viability (P < 0.001), increased apop-
tosis, and necrosis (P < 0.0001) of SN neurons compared to
controls. However, an increase in viability (P < 0.01) (Fig-
ure 2A) and a decrease in apoptosis (P < 0.01) (Figure 2B)
and necrosis (P < 0.001) (Figure 2C) of SN neurons in PD
rats receiving /3-carotene were observed compared with PD
rats. Therefore, 5-carotene administration prevents SN cell
death in PD conditions. The histograms of flow cytometry
are demonstrated in Figure 2d.

4.3. bax and bcl-2 Gene Expressions

The overexpression of bax and downregulation of bcl-2
genes were seen in SN neurons after induction of PD, indi-
cating mitochondrial apoptotic pathway activation. How-
ever, when 2.05 mg/kg [-carotene was administrated for
14 days, bax gene expression was downregulated and bcl-2
overexpressed compared with PD rats (Figure 3).

5. Discussion

The results of the study showed a reduction of rota-
tions in the apomorphine-induced rotation test in the PD
rats. Also, increased viability, decreased apoptosis and
necrosis of SN neurons were observed in PD rats receiving
2.05 mg/kg [-carotene.

One of the most important symptoms of PD is loco-
motor disorders, which are associated with the death of
dopamine-producing nerves in the substantia nigra (19).
Results of the present study showed that unilateral injec-
tion of 6-hydroxydopamine into the substantia nigra of
the rat brain causes immediate and complete destruction
of dopaminergic neurons, which is consistent with other
studies in this field (20, 21). In the current study, 5-carotene
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Figure 1. The Effects of 3-carotene administration on the mean number of rotations in apomorphine-induced rotation test (n = 6). 2.05 mg/kg 3-carotene was administrated

for 14 days and one day after last dosing, the test was done.

appears to improve Parkinson’s symptoms. Protein dam-
age and lipid peroxidation induced by oxidative stress is
involved in PD pathogenesis (22).

The results of studies have shown that oxidative stress
plays a significant role in the pathogenesis of PD, and it
seems that /3-carotene has reduced oxidative stress (23, 24)

Although the results of a meta-analysis showed that
[-carotene and vitamin C administrations did not have a
positive therapeutic effect on PD (25), the present study
showed that -carotene has a positive therapeutic effect on
PD conditions and leads to the prevention of SN dopamin-
ergic cell death. This discrepancy can be attributed to
the low number of studies used in meta-analysis (8 stud-
ies). Other studies have shown neuroprotective effects of
[-carotene after traumatic brain injury (26) and ethanol-
induced neurotoxicity (27). The antioxidant activity of this
compound appears to be responsible for neuroprotective
activity (28).

The bcl-2 gene family plays an important role in the in-
nate pathway of mitochondrial apoptosis and their expres-
sion determines the fate of the cells (29). In the present
study, the expression of bax and bcl-2 genes was studied
by RT-PCR. bax is a protein that has pro-apoptotic activity,
while bcl-2 activity has a cell survival protective role and
its anti-apoptotic activity in neurons and the protective ef-
fect of its activity on neurons have been shown (30). Its

mechanism has been attributed to the reduction of oxida-
tive stress and the increase of oxidative stress tolerance by
increasing the content of antioxidant compounds such as
GSH (31). bax protein interacts with bcl-2 and inhibits the
anti-apoptotic activity of bcl-2. In the present study, it was
shown thatinduction of PD in rats leads to overexpression
of bax and downregulation of bcl-2 expressions, indicating
an increase in apoptotic activity in neurons and the dis-
appearance of dopaminergic neurons in the substantia ni-
gra. However, administration of 3-carotene decreased bax
and overexpressed bcl-2, indicating their neuroprotective
effect.

One of the limitations of the current study was ex-
periments have been done on animal models, and cau-
tion should be taken in extending the results of current
research to humans. Also, clinical studies should be per-
formed in this field.

5.1. Conclusions

In general, S-carotene has neuroprotective effects in
PD model rats. These protective effects were attributed to
the upregulation of bcl-2 and downregulation of bax ex-
pressions. However, this is a preliminary study of the neu-
roprotective effect of S-carotene and identification of the
mechanisms of its neuroprotective effects requires further
studies.
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Figure 2. The effect of B-carotene on viability (A) and apoptosis (B) and necrosis (C) in brain cells of female rats. (D) The histograms of flow cytometry results (n = 4).
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Figure 3. The expressions of bax and bcl-2 genes in substantia nigra neurons of healthy and PD rats receiving 3-carotene (n = 4). After last dosing of 3-carotene, the rats were
killed and SN neurons were prepared and the gene expression levels were measured by RT-PCR. ****vs. control, $$ vs. PD.
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