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Abstract

In recent decades, infertility is becoming a public health issue. Male spermatogenesis failure has been considered a major con-
tributory factor to infertility. Mammalian spermatogenesis is a well-defined process, requiring highly regulation processes in both
transcriptional and the posttranscriptional levels. Discovery of microRNAs (miRNAs or miR) as essential class of gene expression
regulators has provided new insights into a multitude of biological processes including spermatogenesis. In current review study,
we first provide a short overview of spermatogenesis process, and then focus on recent studies that have elucidated the essential
role of miRNAs in different steps of sperm production.
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1. Background

Male fertility depends on successful production of
proper number of functional sperm. The precise process of
spermatogenesis requires unique, complex and dynamic
patterns of genetics and epigenetics regulation. At the
earliest stages of embryogenesis, a small group of cells
is induced to become mammalian primordial germ cells
(PGCs). PGCs, laterally migrate to the future gonads and
become the progenitor population. At this point, PGCs
continue to proliferate and then, under control of their
microenvironment become committed to a developmen-
tal pathway that will direct them to become either eggs
or sperms. Male PGCs become known as gonocytes once
they cease migration. In males, gonocytes give rise to sper-
matogonial stem cells (SSC), as early precursor for sper-
matozoa in the postnatal testis. SSCs are capable of both
self-renewal and differentiation. When sexual maturity is
reached, initiation of spermatogenesis occurs by differen-
tiation of a SSC subpopulation into spermatocytes, sper-
matids, and terminally differentiated mature (1). The re-
maining SSCs proliferate and remain undifferentiated to
maintain the spermatogonial pool. In continuous events
of spermatogenesis throughout the reproductive lifespan,
the pool of SSCs enter meiosis and support the continuous
production of spermatozoa (2). Even though, several pro-
tein coding genes are have been identified to be involved
in production of sperm, the specific mechanisms for regu-

lation of these genes are largely unknown. The discovery
of miRNAs shed a new light on understanding of the com-
plexity of gene regulatory networks. MiRNA are a class of
small, single-stranded, noncoding RNAs of ~ 22nt in length
that bind to their specific target messenger RNAs (mRNAs)
and regulate their translation through one of two distinct
mechanisms: cleavage of complementarity region of tar-
geted mRNA followed by its degradation or inhibition of
mRNA translation. It is estimated that miRNAs account for
1% - 5% of the human genome and regulate more than 50%
protein-coding genes (3). This review article provides an
overview of current understandings supporting the essen-
tial roles of miRNAs in the regulation of spermatogenesis.

2. Methods

Journal databases including PubMed, Science Direct,
Google Scholar, Wiley Online Library, and Oxford were
searched using key words “microRNA”, “spermatogenesis”,
“spermatogonia” and “Sertoli cells”. Researches were in-
cluded in current study if they met quality and relevance
criteria.

3. Results

3.1. Overview of Spermatogenesis
Spermatogenesis accrues in sequential events of mi-

totic, meiotic and post-meiotic phases in the seminifer-
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ous epithelium of the testis. SSCs are the foundation of
spermatogenesis located along the basement membrane
of seminiferous tubules. SSCs can either undergo self-
renewal divisions to renew the stem cell population or
divide and stay together as a pair (Apr spermatogonia)
that are committed to differentiation. Apr spermatogo-
nia undergo a series of mitotic divisions, forming chains
of 4, 8, and occasionally, up to 32 A aligned (Aal) sper-
matogonia. They then give rise to several generations of
differentiating A1-A4, intermediate and B spermatogonia
(3). Type B spermatogonia undergo another mitotic divi-
sion to produce diploid, preleptotene primary spermato-
cytes. These cells represent the beginning of long-lasting
meiosis I, where homologous recombination occurs and
chromosome number is reduced. During this stage, a
primary spermatocyte generates two secondary spermato-
cytes, which undergo meiosis II and devides into two equal
haploid spermatids. The round spermatids are matured
into spermatozoa (sperm) by the process called spermato-
genesis.

3.2. miRNAs in Different Steps of Mammalian Spermatogenesis

Not surprisingly several microRNAs are indicated to
play crucial roles in the events of spermatogenesis, which
involved complex epigenetic modifications and transcrip-
tional regulation. This regulatory milieu includes the ex-
pression of components involved in miRNA biogenesis
(DGCR8, Drosha, Dicer, Risc, Exportin-5) along with tran-
scription of primary miRNA.

The overall essential of miRNA regulatory cascades for
regulation of spermatogenesis process has been demon-
strated via approaches that conditionally knockout (cKOs)
the factors involved in miRNA biogenesis. Notably, by us-
ing different promoters to drive germline-specific gene in-
activation at various time points, it has been indicated that
the timing of knockout for each component of miRNA bio-
genesis affects type and extent of spermatogenesis failure.

For instance, knockout of Dicer in mice was associated
with early decrease in germ cell number, followed by im-
paired differentiate as well as abnormal motility (4). In
other hand, the early disruption of Dicer in PGCs at em-
bryonic day 10 led to reduced number of neonatal sper-
matogonia (5). Moreover, inactivation of Dicer, DGCR8 or
Drosha at later time points (E18 or postnatal day 3), led to
failure of meiosis completion (due to impaired transition
from the leptotene/zygotene stage during prophase I to
the pachytene) (6), leading to elimination of spermatoge-
nesis at pachytene (7).

However, in all of these approaches miRNA biogene-
sis apparatus was disrupted and several miRNAs and sig-
naling pathways were affected simultaneously; Thus, al-
though they do not give much insight into the identities

of the specific miRNAs related to phenotypes, nor do they
reveal their specific functional roles. Moreover, most of
miRNAs have several direct or indirect targets; thus, dys-
regulation of even a single miRNA may lead to great conse-
quences. Below, we briefly summarize the specific contri-
bution of different miRNAs in the regulation of spermato-
genesis.

3.2.1. MiRNA and SSCs Cell Renewal

Spermatogenesis initiates once a subset of SSCs com-
mit to differentiation rather than remaining in the self-
renewing phase. MiRNAs, have gained significant atten-
tion as endogenous regulators for SSCs fate and behavior.

The global expression of miRNAs in the murine testis
have been investigated in different animal; But few have in-
vestigated profile of miRNAs expression in a specific subset
of testicular cells, particularly the SSC population or PGCs
(5, 8). Studies on Thy1+ fraction of testis cells, enriched for
SSC and PGCs have revealed that a large number of miR-
NAs, including miR17–92 cluster (9), miR-106b-25 (Mirc3)
cluster (9), miR290-295 cluster (10-12), miR146 (13), miR20,
miR106a (14), miR21, miR-34c (15), miR221, miR222 (16),
miR135a (17) miR302-367 cluster (5) are highly expressed in
these cell populations.

Mir-17-92 (Mirc1) cluster is a bona fide oncogene, over-
expressed in various cancerous cells (18); thus, it could be
essential for maintaining the tumor cells in an undifferen-
tiated status.

High expression of Mir-17-92 (Mirc1) cluster in Thy1+
cells is in agreement with available findings that identified
this cluster as preferentially expressed throughout devel-
opment of mouse neonatal PGCs (14). During induction
of spermatogonial differentiation by retinoic acid (RA) the
expression of Mir-17-92 (Mirc1) cluster as well as its para-
log Mir-106b-25 (Mirc3) cluster is reported to be downregu-
lated (9). This suggests that both of these clusters seem to
play a role in SSC self-renewal and proliferation. Putative
target genes for these clusters were suggested to be Bcl2l11
(also known as Bim) (19), Kit (20), Socs3 (21), and Stat3 (22)
that are suggested to be involved in spermatogonial devel-
opment.

Interestingly, even though male specific knockout of
Mir-17-92 (Mirc1) in male mice germ cell led to smaller
testes and reduced numbers of epididymal sperms, it was
not associated with significant defects in spermatogene-
sis in comparison with their littermates. It potentially
suggests that the paralog of Mir-17-92 (Mirc1) cluster, Mir-
106b-25 (Mirc3) cluster can compensate its depletion. In
agreement with this supposition, the absence of Mir-17-92
(Mirc1) is indicated to be associated with upregulation of
the Mir-106b-25 (Mirc3) cluster miRNAs in the germ cells
(9).
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Using miRNA mimics and inhibitors, it has been re-
vealed that three highly expressed miRNAs in mouse SSCs
including miRNA-20, miRNA-106a and miR-21 promote re-
newal of SSCs and contribute to maintenance of mouse
SSC homeostasis (14, 15). MiR-20 and miR-106a play regula-
tory roles via targeting Stat3 and Ccnd1 (14). Furthermore,
miR2, highly enriched microRNAs in SSCs, is regulated by
the transcription factor ETV5, which is required for contin-
uous spermatogenesis (15).

MiR135a has been indicated to play role in maintenance
of the spermatogonial stem cell via modulation of tran-
scription factor Foxo1 activity that enhances the elevation
of Ret protein on the cell surface of SSCs (17). Besides, miR-
544 is indicated to contribute to regulation of goat SSCs
self-renewal through targeting the PLZF, a well-stablished
transcription factor involved in SSC self-renewal (23). Simi-
larly, miR-224 was reported tp control mouse SSC prolifera-
tion by modulating PLZF and GFRα1 (23). MiR-204 was also
identified to be involved in the regulation of dairy goat SSC
self-renewal via targeting Sirt1(24). Interestingly, in goat
SSCs miR-34c is indicated to be highly expressed and reg-
ulate SSC population by induction of their apoptosis in a
p53-depemdent manner (25).

MiR-202-3p and -5p are among other highly expressed
miRNAs in the testis and spermatogenic cells. They are op-
positely regulated by GDNF and RA, two crucial regulatory
factors involved in self-renewal and differentiation of SSCs
(26). Functioning as gatekeepers, these two miRNAs pre-
vent premature differentiation of SSCs via modulation of
the expression of various target genes, including cell cy-
cle regulators and RNA binding proteins. Interestingly the
knockdown of Rbfox2, a direct target for miR-202 blocks
meiosis initiation of cultured SSCs, suggesting that Rbfox2
is one of the members of miR-202-centered regulatory net-
work.

3.2.2. The Roles of MiRNAs in Meiosis and Spermatogenesis

Available studies have indicated that in addition to
miRNAs involved in SSCs self-renewal, a several miRNAs are
reported to be preferentially expressed in spermatocytes
and spermatids. Majority of these miRNAs are indicated
to play roles in the regulation of genes involved in meiotic
and post-meiotic processes.

The members of MiR-449 cluster are indicated to be ex-
clusively expressed in spermatocytes and spermatids and
their expression is significantly increased upon meiotic
initiation in spermatogenesis. The stimulation of miR-449
cluster expression in mouse testes accurse by binding of
two transcription factors CREMτ , an crucial regulatory el-
ement in developing male germ cells (27), and SOX5, a ma-
jor post-meiotic transcriptional regulator (28, 29) to two

highly conserved cis-elements of the members of this clus-
ter (30).

The miR-34c has been indicated to be highly expressed
in germ cells (31). Besides, the significant role of this
miRNA in the regulation of SSCs status has been reported.
However, because miR-34c is also highly expressed in iso-
lated pachytene spermatocytes and round spermatids it
seems that this specific miRNA plays a dual role in both
SSCs maintenance and spermatogonia differentiation (25,
32). It is noteworthy to mention that two direct targets of
miR34c, TGIF2 and NOTCH2, are known to play roles in sper-
matogenesis (31, 33). TGIF2 contributes to spermatogenesis
by inhibition of the TGFβ pathway, as a major player in this
process (34, 35); thus, miR-34c potentially play rolls dur-
ing spermatogenesis via the down-regulation of TGIF2 and
subsequent inhibition of TGFβ pathway (36).

Another target of miR-34c, NOTCH2, is scarcely ex-
pressed in germ cells, playing an important role during
testis somatic cell differentiation (37-39). It suggests that
miR-34c potentially plays a significant role in germ cells
differentiation via down-regulation of NOTCH2 (31).

MiR-34c also promotes SSC differentiation and meiosis
by targeting a male-specific gene, called NANOS2. The prod-
uct of this gene plays a significant role in keeping or SSC or
spermatogonia in an undifferentiated state via inhibiting
NANOS3, SCP3, DAZL, and Stra8 expression (40-42).

It is noteworthy to mention that miR-34b/c and miR-
449 cluster share the identical seed regions (30, 43), sug-
gesting that they regulate germ cell differentiation and
survival via same pathways such as E2F-pRb (44-46). Inter-
estingly, knockout of either miR-449 or miR-34 paralogs
alone is not associated with discernible defect in male
germ cell development. However, miR-34b/c; miR-449 dou-
ble knockout mice displayed severe spermatogenic impar-
ment and male infertility. These findings strongly suggest
that these two miRNA clusters function redundantly in the
regulation of spermatogenesis (30, 43).

Another highly expressed miRNA in spermatocytes is
miR-18, one of the miR-17-92 cluster (47). MiR-18 targets
Hsf2, which is a critical transcription factor for spermato-
genesis (47). Heat shock proteins are also targets of miR-
214, which plays a key role in meiosis of pachytene sperma-
tocytes (48, 49).

MiR-355 and miR-181b/c, two other up-regulated mi-
croRNAs in adult testis, are indicated to target rsbn1, a
novel homeobox-like gene involved in transcriptional reg-
ulation of haploid germ cells (11, 44, 50). MiR-320, which
is expressed in all germ cells, is predicted to target impor-
tant mediators of cell-adhesion known as protocadherins.
These molecules play important in cell adhesions between
sertoli and germ cells (46).

Two testis-expressed microRNA, miR-469 and miR122a,
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are indicated to target transition protein2 (TNP) and pro-
tamines (PRM) in pachytene spermatocytes and round
spermatids. As the timely regulated expression of these
two important chromatin remodelers play significant
roles in sperm maturation and spermatogenesis, dysregu-
lation of miR-469 and miR122a seems to be involved in fail-
ure of spermatogenesis (49, 51).

The expression of let-7 family miRNAs is indicated to
be induced upon RA induced spermatogonial differentia-
tion. The down-regulation of let-7 family was showed to
be associated with down-regulation of let-7 family targets
including Mycn, Ccnd1, and Colla2 (52). It has been indi-
cated that the upregulation of let-7 is mediated by decrease
in the levels of an RNA-binding protein LIN28, which is
known to be involved in inhibition of let-7 miRNA biogene-
sis (53). LIN28 is expressed in mouse undifferentiated sper-
matogonia, and plays regulatory role in cyclic expansion of
spermatogonial progenitor population (54). Interestingly
Lin28 itself is a target gene for let7 family, suggesting that
they function together as a regulatory feed-forward loop.

3.2.3. Role of miRNA Expression in Sertoli Cells

Sertoli cells are unique as they are non-growing ter-
minally differentiated cell types in adult testis being ac-
tive for the reproductive lifetime. Several distinctive spe-
cialized junctions are formed by these cells to provide a
well-organized scaffold and environment for germ cell de-
velopment. Besides, these cells secrete several substances
crucial for the maintenance of the spermatogenesis syn-
chrony, development and survival of germ cells.

The majority of investigations on human sertoli cells’
miRNAs activity have been conducted by comparing their
expression level of in men with sertoli cells-only syndrome
(SCOS) and in men with normal spermatogenesis (55, 56).
Available findings have suggested the miR-133b and miR-
202 are potentially involved in pathogenesis of azoosper-
mia or SCOS (55, 57). The expression of MiR-133b is reported
to be increased in human sertoli cells of SCOS patients com-
pared to obstructive azoospermia (OA) patients with nor-
mal spermatogenesis. MiR-133b plays its role in promotion
of human sertoli cells proliferation through targeting GLI3
and regulating expression of Cyclin B1 and Cyclin D1 (57).
In contrast to miRNA-133b, miRNA-202-5p is indicated to be
selectively expressed in sertoli cells of fertile men and to-
tally absent in sertoli cells in this aforementioned condi-
tion (55).

The results of in vitro studies using porcine models as
an alternative showed that miR-762 and miR-1285 play sig-
nificant roles in stimulation of sertoli cells proliferation
through distinct pathways in the cell cycle (58, 59).

MiR-762 was identified to be upregulated in Large
White boar immature testes (45). In sertoli cells, miR-762

directly binds the 3′UTR of RNF4, leading to downregula-
tion of its expression. RNF4 is a coregulator of androgen re-
ceptor (AR)-dependent transcription (58, 60, 61) and its de-
creased expression was associated with weakening of the
AR transcriptional regulatory activity. Thus, miR-762 seems
to affect immature sertoli cells by partially enervating the
AR transcriptional regulatory activity via targeting RNF4
(58).

In vitro experiments conducted on boar showed that
the miR-1285 mimics directly downregulated the expres-
sion of AMPK via a 3’UTR target site, resulting in promo-
tion of sertoli cell proliferation. Moreover, miR-1285 mim-
ics led to increased levels of mRNA and protein ATP, phos-
phorylated mTOR (mammalian target of rapamycin) and
Skp2 (S-phase kinase-associated protein 2); meanwhile, re-
duced the expression of p53 and p27. These findings sug-
gested the miR-1285 plays significant role in proliferation
of immature sertoli cell (59).

4. Conclusions

Extensive and precise regulation of gene expression is
essential for governing accurate spermatogenesis process.
The discovery of miRNAs has opened new horizons in the
unravelling the mechanisms involved in different steps of
spermatogenesis. It is now clear that dysregulation of miR-
NAs, either in the germ lineage or supporting cells of the
testis, has detrimental impact on spermatogenesis male
fertility. The emergence of powerful set of technologies for
studying single cell small RNA would be very beneficial to
further explore the functions of germ-cell/supporting cells
specific miRNAs and identify their potential targets.
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