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Abstract 

Cardiovascular disease (CVD) is a leading cause of death worldwide, and it has been found to have a strong genetic component. 

In recent years, there has been much interest in the role of microRNAs (miRNAs) in CVD. miRNAs are small non-coding RNAs 

that regulate gene expression post-transcriptionally by binding to the 3' untranslated region (UTR) of target mRNAs. Many studies 

have shown that miRNAs play a crucial role in various physiological processes, including the regulation of cellular functions 

involved in the development of CVD. 

Several miRNAs have been identified that are involved in the pathogenesis of CVD, and some of them are associated with 

specific cardiovascular risk factors, such as hypertension or diabetes. It has been suggested that targeting specific miRNAs or 

combinations of miRNAs could serve as a novel therapeutic approach for CVD. 

Moreover, studies have also shown that certain genes are involved in CVD risk and progression leading to different clinical 

manifestations like coronary artery disease, heart failure, and valvular disease. Some of these genes are involved in lipid 

metabolism, inflammation, and cell proliferation and differentiation, and their expression is regulated by miRNAs. 

In conclusion, a complex interaction between genes and miRNAs contributes to CVD pathogenesis, and further research is 

required to fully understand the mechanisms involved. Nevertheless, the identification of specific miRNAs that are involved in 

CVD provides potential targets for future therapeutics. 

Keywords:  MicroRNA, CVD, Genes 

1. Introduction 

Cardiovascular disease (CVD) is a multifactorial disorder that 

encompasses various pathological conditions that affect the heart and 

blood vessels, including coronary artery disease, heart failure, and 

valvular disease. It is a leading cause of morbidity and mortality 

worldwide, accounting for over 17 million deaths annually. The 

development and progression of CVD are influenced by a wide range 

of factors, including lifestyle, environmental factors, genetics, and 

epigenetics [1, 2]. Over the years, extensive research has identified 

several regulators that contribute to CVD pathophysiology, including 

genes and microRNAs (miRNAs) [3]. 

miRNAs are small non-coding RNAs that play critical roles in the 

regulation of gene expression by targeting messenger RNA (mRNA) 

transcripts for degradation or translational inhibition. Dysregulation 

of miRNA expression has been implicated in various aspects of 

CVD, including angiogenesis, inflammation, oxidative stress, and 

apoptosis [4].  

Recent studies have revealed the critical roles of miRNAs in CVD 

pathophysiology and have shown that miRNAs are involved in many 

aspects of CVD development and progression for instance, miR-21 

promotes angiogenesis and vascular repair, while miR-34a inhibition 

reduces atherosclerosis and endothelial dysfunction in mouse models of 

CVD. MiR-126 plays a protective role in endothelial function and 

angiogenesis, while miR-155 plays a role in inflammation and immune 

cell activation in CVD. These findings have led to increased interest in 

the potential use of miRNAs as therapeutic targets for CVD [5, 6]. 

Understanding the dynamic interactions between miRNAs and genes 

could deepen our knowledge of CVD pathophysiology and enhance our 

diagnostic capabilities, leading to the development of novel therapeutic 

strategies. For example, miRNAs have been identified as potential 
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targets for CVD therapy, and several miRNA-based therapies have progressed to clinical trials. Additionally, miRNAs have shown promise as 

biomarkers for CVD diagnosis and prognosis [4]. The current understanding of various miRNAs and genes regulated by them that are involved 

in CVD pathophysiology is constantly evolving. Several studies have identified multiple miRNAs and genes that are implicated in CVD 

development and progression. For instance, miR-145 regulates smooth muscle cell function and is implicated in the development of 

atherosclerosis, while miR-33a inhibition reduces atherosclerotic plaque formation and improves cholesterol metabolism in preclinical studies. 

Moreover, miR-208a regulates cardiac hypertrophy and fibrosis and has been identified as a potential therapeutic target for heart failure and other 

CVDs [5]. 

The role of these regulatory elements in the context of different CVD subtypes such as coronary artery disease, heart failure, and valvular disease 

is also being investigated. For instance, miR-34a inhibition has been shown to reduce atherosclerosis and endothelial dysfunction in mouse 

models of coronary artery disease, while miR-208a has been implicated in cardiac hypertrophy and fibrosis in heart failure patients. 

Understanding the specific roles of microRNAs in different subtypes of CVD could lead to the development of subtype-specific therapies that 

target the dysregulated pathways [7]. Despite the potential therapeutic applications of miRNAs in CVD, several limitations and challenges need 

to be addressed. One significant challenge is the delivery of miRNA-based therapies to target cells or tissues [8]. Issues of specificity, efficiency, 

and off-target effects remain a major challenge in the development of miRNA-based therapies. Moreover, there are concerns about the potential 

toxicity and off-target effects on other molecular pathways [9].To overcome these challenges, several therapeutic approaches have been 

developed, including microRNA mimics, inhibition of specific microRNAs, nanoparticle-based delivery systems (Fig 1), and conjugated 

microRNA therapies [10]. Additionally, multi-targeted approaches that involve combining several microRNA mimics or inhibitors for enhanced 

efficacy are being explored [9]. 

Further research is needed to optimize the efficacy and safety of miRNA-based therapies for CVD. Advances in gene editing technologies may 

provide new ways to modulate miRNA expression for therapeutic applications. Additionally, the development of miRNA-based biomarkers for 

diagnostics and disease monitoring holds great promise [11]. 

miRNAs have emerged as critical regulators of CVD pathophysiology, and understanding their roles in different subtypes of CVD could lead to 

the development of novel therapeutic strategies. However, several challenges need to be addressed, and further research is needed to optimize the 

safety and efficacy of miRNA-based therapies for CVD. The potential applications of miRNAs in CVD diagnosis and therapy are vast, and their 

role as biomarkers for disease monitoring and prognosis is gaining importance. It is imperative to continue studying the complex interactions 

between miRNAs and genes in CVD to better understand the disease's pathophysiology and identify new therapeutic targets. With further 

research and development, miRNA-based therapies could provide a promising avenue for preventing and treating CVD [12]. 

 

Figure 1. Application of Nano medicine in CVD treatment 

Genes related to Lipid Metabolism 

Lipid metabolism genes underpin the complex pathways that regulate lipid synthesis, transport, and degradation [13]. Multiple genetic variants 

can influence the production, storage, and metabolism of different lipid species, such as LDL, HDL, and triglycerides, with significant 

implications for CVD development [14, 15]. Dysregulated lipid metabolism, particularly high levels of LDL cholesterol, leads to the formation 

of atherosclerotic plaques that obstruct blood flow and can cause heart attacks and strokes [16, 17]. Genetic testing and counseling can help 

identify individuals with lipid metabolism disorders and increased CVD risk, enabling healthcare providers to tailor treatment plans to the 

individual's needs. In particular, genetic tests depicting cholesterol metabolism gene profiles can offer insight into identifying individuals at risk 
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for developing dysfunction in lipid metabolism, including CVD, earlier in their lives [18-21]. Advances in genomics have offered new 

opportunities for developing targeted interventions that address lipid metabolism and reduce CVD risk. [22] Emerging therapies, including RNA-

based therapies and gene editing approaches, are aimed at targeting lipid metabolism genes like PCSK9 to lower LDL cholesterol levels and 

reduce the risk of CVDs [23, 24]. Such promising methods of gene therapy already show great promise in the treatment and prevention of CVDs 

[24]. 

   In addition to LDL cholesterol, other lipid markers are associated with CVD risks, including triglycerides and HDL cholesterol [25, 26]. 

Multiple genes contribute to the regulation of these lipids, and genetic variations in these genes can impact the lipid profile and subsequent CVD 

risk [27, 28]. Genetic testing can identify individuals who possess these variations, as well as those with specific lipid metabolism defects such as 

familial hypercholesterolemia, enabling earlier intervention that can help mitigate their risk of developing CVDs [29, 30]. Developments in 

genomics present an opportunity in the field of precision medicine, where a patient's genetic makeup can be considered to target specific 

susceptibilities before they cause disease. Genetic profiling can help physicians develop personalized management strategies that may include 

lifestyle modifications, medication, or surgical interventions that optimize the health of each patient [31-33]. 

  Overall, the application of genetic and genomic testing in the context of lipid metabolism can reveal personalized information about CVD risks, 

enable earlier interventions, and lead to a more targeted approach to therapy with the hope of preventing the development of CVDs. Through 

further research and innovation, genomics may play an increasingly vital role in identifying at-risk individuals, facilitating early detection, and 

improving treatments that ultimately save lives [34-37]. The genetic factors contributing to CVDs are diverse, and the links between lipid 

metabolism genes and CVDs are increasingly recognized. Advances in genomics have led to the discovery of novel associations between lipids, 

their metabolites, and CVD outcomes, enabling researchers to identify new therapeutic targets. Also, associations of certain lipid metabolism 

genes-linked CVDs can be influenced by lifestyle and diet factors, further underscoring the need for personalized intervention decisions [38, 39]. 

 Gene therapy, an emerging field of medicine, provides a promising avenue for treating CVDs that stem from lipid metabolism dysregulation. By 

targeting key genes within lipid metabolism pathways, gene-editing methods, and RNA-based therapies can decrease the production of LDL 

cholesterol and other harmful lipids associated with CVD risks. Researchers have already designed gene therapy trials in animal studies and have 

initiated early human studies with promising results [40, 41].   

Table 1. Common Genes related to Lipid Metabolism 

Genes Functions Role in Lipid Metabolism Associations with CVD Symptoms of CVD Ref 

APOB 
Encodes for 

apolipoprotein B 

Regulates lipid metabolism 

and transport 

Elevated levels linked to 

increased risk of CVD 

Chest pain, shortness of 

breath, fatigue 
[42, 43] 

CETP 

Encodes for 

cholesterol ester 

transfer protein 

Transfers cholesterol esters 

between lipoproteins 

Mutations associated with 

lower risk of CVD 
Palpitations, dizziness [44, 45] 

LDLR 
Encodes for LDL 

receptor 

Regulates clearance of LDL 

particles 

Mutations can lead to 

dyslipidemia and increased 

risk of CVD 

Chest pain, shortness of 

breath 
[46, 47] 

LPL 
Encodes for 

lipoprotein lipase 

Hydrolyzes triglycerides in 

circulating lipoproteins 

Deficiency in LPL linked to 

hypertriglyceridemia and CVD 

risk 

Fatigue, shortness of 

breath, leg swelling 
[48, 49] 

ABCA1 

Encodes for ATP-

binding cassette 

transporter A1 

Facilitates cholesterol efflux 

from cells to HDL particles 

Mutations associated with 

reduced HDL-C levels and 

increased risk of CVD 

Chest pain, shortness of 

breath, fatigue 

[50, 51] 

 

PLTP 

Encodes for 

phospholipid 

transfer protein 

Facilitates transfer of 

phospholipids between 

lipoproteins 

Elevated PLTP levels 

associated with increased risk 

of CVD 

Dizziness, fatigue, 

shortness of breath 
[52, 53] 

Table 1 includes additional columns with associations with CVD, and common symptoms of CVD. However, it's important to note that not all 

individuals with these genetic variations experience the same symptoms or have the same risk for CVD.  

MicroRNAs related to Lipid Metabolism 

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to target mRNAs. Dysregulation of miRNAs has 

been implicated in various diseases, including cardiovascular disease (CVD). CVD is a group of disorders that affect the heart and blood vessels 

and is a leading cause of mortality worldwide. Dyslipidemia is a hallmark of CVD and is characterized by abnormal lipid metabolism. miRNAs 

have been shown to play an important role in the regulation of lipid metabolism and dyslipidemia [54-56]. MiR-33 and miR-122 are two 

miRNAs that have been shown to be involved in lipid metabolism in the liver. MiR-33 regulates cholesterol efflux and fatty acid oxidation, while 

miR-122 regulates hepatic lipid metabolism. MiR-33 has been proposed as a therapeutic target for dyslipidemia and CVD. 
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MiR-33 inhibition has been shown to increase HDL cholesterol levels and reduce atherosclerosis in animal models. In contrast, miR-122 

inhibition has been shown to increase hepatic steatosis and promote NAFLD (non-alcoholic fatty liver disease) [57-60]. MiR-208a is a cardiac-

specific miRNA that has been shown to regulate lipid metabolism in the heart. MiR-208a inhibition has been shown to increase cardiac fatty acid 

oxidation and improve cardiac function in animal models of heart failure [61-64]. MiR-223 is another miRNA that has been implicated in lipid 

metabolism and atherosclerosis. MiR-223 regulates macrophage and foam cell formation and may play a role in the development of 

atherosclerotic plaques [65-67]. MiR-29 has been shown to regulate collagen deposition in the heart. MiR-29 inhibition has been shown to 

increase collagen deposition and fibrosis in animal models of heart failure [68, 69]. MiR-126 is an endothelial-specific miRNA that has been 

shown to regulate angiogenesis and vascular function. MiR-126 plays an important role in the regulation of endothelial nitric oxide synthase 

(eNOS) and may protect against atherosclerosis [70, 71].  MiR-132 and miR-212 are two miRNAs that are involved in endothelial dysfunction 

and atherosclerosis. MiR-132 and miR-212 inhibition have been shown to improve endothelial function and reduce atherosclerosis in animal 

models [72-75]. MiR-145 is a smooth muscle cell-specific miRNA that has been shown to regulate smooth muscle cell differentiation and 

migration. MiR-145 may play a role in the development of intimal hyperplasia and restenosis following angioplasty [76, 77]. MiR-21 is an anti-

apoptotic miRNA that has been shown to be upregulated in atherosclerotic plaques. MiR-21 inhibition has been shown to reduce plaque size and 

improve vascular function in animal models of atherosclerosis [78-81]. MiR-155 is an inflammatory miRNA that has been implicated in 

atherosclerosis. MiR-155 regulates macrophage activation and may promote the formation of atherosclerotic plaques [79, 82-84]. MiR-33 and 

miR-122 are potential therapeutic targets for dyslipidemia and CVD. MiR-208a and miR-212/132 may be therapeutic targets for heart failure and 

atherosclerosis. MiR-126 and miR-21 may be therapeutic targets for vascular dysfunction and atherosclerosis. MiR-145 may be a therapeutic 

target for restenosis following angioplasty [85-88]. 

Table 2. definitions of MicroRNAs related to Lipid Metabolism 

miRNA Role in Lipid Metabolism and Cardiovascular Disease Potential Therapeutic Target Ref 

miR-33 
Regulates cholesterol efflux and fatty acid oxidation; proposed target for 

dyslipidemia and CVD 
Yes [89-91] 

miR-122 Regulates hepatic lipid metabolism; inhibition may promote NAFLD Yes [90, 92] 

miR-

208a 

Regulates lipid metabolism in the heart; inhibition may improve cardiac function 

in heart failure 
Yes [93, 94] 

miR-223 
Regulates macrophage and foam cell formation; may play a role in atherosclerotic 

plaque development 
No [95-97] 

miR-29 
Regulates collagen deposition in the heart; inhibition may increase fibrosis in 

heart failure 
No [98-100] 

miR-126 Regulates angiogenesis and vascular function; may protect against atherosclerosis Yes [101, 102] 

miR-132 
Involved in endothelial dysfunction and atherosclerosis; inhibition may improve 

endothelial function 
Yes [103-105] 

miR-212 
Involved in endothelial dysfunction and atherosclerosis; inhibition may improve 

endothelial function 
Yes [104, 106, 107] 

miR-145 
Regulates smooth muscle cell differentiation and migration; may play a role in 

restenosis following angioplasty 
Yes [108, 109] 

miR-21 
Anti-apoptotic miRNA upregulated in atherosclerotic plaques; inhibition may 

reduce plaque size and improve vascular function 
Yes [110, 111] 

miR-155 
Inflammatory miRNA implicated in atherosclerosis; regulates macrophage 

activation and may promote plaque formation 
No [112-114] 

Further research is needed to fully elucidate the role of miRNAs in lipid metabolism and CVD. miRNA-based therapies have the potential to 

revolutionize the treatment of dyslipidemia and CVD. The use of miRNA mimics or inhibitors may be an effective approach to target 

dysregulated miRNAs. Nanoparticle-based delivery systems may be used to enhance the specificity and efficacy of miRNA-based therapies [115-

119]. miRNA-based therapies may have fewer side effects than traditional drug therapies. miRNA-based therapies may be more personalized, as  

miRNA expression profiles can be used to identify patients who are likely to respond to treatment. Challenges to the development of miRNA-

based therapies include the potential for off-target effects and the need for effective delivery systems [120, 121]. Advances in miRNA research 

have greatly expanded our understanding of the pathogenesis of dyslipidemia and CVD which is concluded in Table 2. miRNAs are promising 

targets for the development of new therapies for dyslipidemia and CVD. Further research is needed to fully realize the therapeutic potential of 

miRNAs in lipid metabolism and CVD. 

Genes related to Inflammation 

Inflammation is now considered to be a key component in the development of many chronic diseases, including CVD. Genetic factors have also 

been found to play a significant role in disease susceptibility, with numerous genes linked to inflammation identified as mediators in the 

development of CVD. Some examples include the NF-κB and NLRP3 genes that regulate inflammation pathways, as well as other genes 

involved in lipoprotein metabolism that contribute to the development of atherosclerosis through the promotion of low-grade inflammation [122-

124]. Genetic testing of cytokine and inflammation genes can help predict an individual's CVD risk, especially in cases where there is a family 

history or other known risk factors. Certain genetic polymorphisms can also modulate the effectiveness of anti-inflammatory drugs in CVD 

therapy, allowing for more personalized treatment plans [125-127]. Inflammatory markers can provide valuable insights into the onset and 

progression of CVDs, and the implementation of gene-based therapies targeted toward regulating inflammation may enhance the efficacy of 

contemporary CVD therapy approaches. For example, immunotherapy is an emerging avenue for personalized inflammation in CVD 

management and treatment [125-127]. However, it is important to note that gene-environment interactions may influence both inflammation 
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and CVD risk, especially in people with a family history of CVDs. Chronic infections by certain microbes, such as Chlamydia pneumonia and 

Helicobacter pylori, also contribute to CVD risk by promoting inflammatory pathways [125-127]. 

In conclusion, inflammation-related genes and their dysregulation have strong heritability components and are critically involved in the 

pathogenesis of CVDs and their role is stated in Table 3. Further research is needed to better understand the functional implications of 

inflammation-associated gene polymorphisms in CVDs and how these findings can be translated into personalized therapeutic interventions. 

Table 3. Role of genes related in Inflammation of CVD 

Topic Description 

Role of inflammation in chronic diseases 
Inflammation is a key component in the development of many chronic diseases, including 

cardiovascular disease (CVD). 

Genetic factors in disease susceptibility 

Numerous genes linked to inflammation have been identified as mediators in the development of 

CVD, including genes involved in lipoprotein metabolism and inflammation pathways such as 

NF-κB and NLRP3. 

Genetic testing for CVD risk 
Genetic testing of cytokine and inflammation genes can help predict an individual's CVD risk, 

especially in cases where there is a family history or other known risk factors. 

Modulation of drug 

effectiveness through genetic polymorphisms 

Certain genetic polymorphisms can modulate the effectiveness of anti-inflammatory drugs in CVD 

therapy, allowing for more personalized treatment plans. 

Inflammatory markers in CVDs Inflammatory markers can provide valuable insights into the onset and progression of CVDs. 

Gene-based therapies for inflammation 
The implementation of gene-based therapies targeted toward regulating inflammation may 

enhance the efficacy of contemporary CVD therapy approaches, such as immunotherapy. 

Gene-environment interactions 
Gene-environment interactions may influence both inflammation and CVD risk, especially in 

people with a family history of CVDs. 

Chronic infections and inflammation 
Chronic infections by certain microbes, such as Chlamydia pneumonia and Helicobacter pylori, 

also contribute to CVD risk by promoting inflammatory pathways. 

Future research 

Further research is needed to better understand the functional implications of inflammation-

associated gene polymorphisms in CVDs and how these findings can be translated into 

personalized therapeutic interventions. 

MicroRNAs related to Inflammation 

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a critical role in the regulation of gene expression [128, 129]. 

Dysregulated miRNA expression has been linked to the development and progression of cardiovascular diseases (CVDs), which are a group of 

conditions that affect the heart and blood vessels [130, 131].  Inflammation is a key component of CVD pathology and contributes to the 

development and progression of many forms of CVD. Inflammatory miRNAs have emerged as new targets for understanding and treating CVD 

[132]. 

Several miRNAs have been studied in the context of inflammation in CVD [129]. miR-155 is a pro-inflammatory miRNA that promotes 

inflammation by targeting the NF-κB signaling pathway [133]. miR-146a/b, on the other hand, are anti-inflammatory miRNAs that suppress 

inflammation by targeting the same NF-κB signaling pathway [134, 135]. miR-21 is another miRNA that promotes inflammation and is anti-

apoptotic, meaning it prevents cell death, by targeting the PI3K/Akt signaling pathway [136, 137]. miR-34a, on the other hand, promotes 

apoptosis and senescence, which are processes that lead to cell death and aging, respectively, by targeting the p53 signaling pathway [138]. 

The potential of miRNAs to treat inflammation in CVD holds great promise for developing new approaches for the prevention and treatment of 

CVD. However, the use of miRNA-based therapies in CVD is still in the early stages, and more research is needed to identify safe and effective 

miRNA-targeted treatments. The discovery of new miRNAs involved in inflammation and CVDs may further advance the development of new 

treatments [139-141]. 

In summary, miRNAs play a critical role in the regulation of gene expression and have been linked to the development and progression of 

CVDs. Inflammatory miRNAs, such as miR-155, miR-146a/b, miR-21, and miR-34a, have been identified as new targets for understanding and 

treating inflammation in CVD. The potential of miRNA-based therapies in CVD holds great promise for developing new approaches for the 

prevention and treatment of CVD, but more research is needed to identify safe and effective miRNA-targeted treatments and the correct 

statement is gathered in Table 4. 

Table 4. Role of MicroRNAs in Inflammation 

miRNA Role in Inflammation in CVD Targeted Pathways References 

miR-155 
Pro-inflammatory; promotes inflammation by targeting the NF-κB signaling 

pathway 
NF-κB [142, 143] 

miR-146a/b 
Anti-inflammatory; suppresses inflammation by targeting the NF-κB signaling 

pathway 
NF-κB [142, 144, 145] 

miR-21 
Pro-inflammatory; anti-apoptotic; prevents cell death by targeting the PI3K/Akt 

signaling pathway 
PI3K/Akt [142, 146, 147] 

miR-34a Promotes apoptosis and senescence by targeting the p53 signaling pathway p53 [142, 148] 

 

Genes Related to coagulation 

Cardiovascular disease is a serious global health problem that can be influenced by genetic factors, including genes involved in the regulation of 

blood clotting [149]. Genetic mutations affecting coagulation in CVD are associated with an increased risk of the disease [150]. These mutations 
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can impact genes including Factor V Leiden, Prothrombin G20210A, GP Ib-IX-V complex, Von Willebrand factor (vWF), and the angiotensin-

converting enzyme [151]. Factor V Leiden is one of the most common genetic mutations affecting coagulation, with individuals carrying this 

mutation having a higher risk of venous thromboembolism [152]. The Prothrombin G20210A mutation is also associated with an increased risk 

of blood clotting and is typically observed with an elevated prothrombin level [153]. The GP Ib-IX-V complex modulates platelet interaction 

with several proteins in the process of coagulation. Individuals carrying mutations in the GP Ib-IX-V complex may develop Bernard-Soulier 

syndrome, which leads to a bleeding disorder [154, 155]. Von Willebrand factor plays a crucial role in the formation of clots as it activates 

platelets and stabilizes fibrin that reinforces the blood clot [156]. Individuals carrying mutations in the vWF gene are more likely to have issues 

with bleeding and thrombotic disorders [157]. The angiotensin-converting enzyme (ACE) gene has also been associated with hypertension and 

increased risk of CVD-related mortality [158]. 

Research indicates that genetic variations that affect cytokine expression, inflammation, and lipid metabolism are also relevant to CVD [159]. 

Genetic polymorphisms in inflammatory genes such as TNF-alpha, IL-6, and IL-1 also increase the risk of CVD [160, 161]. Many lifestyle 

factors like smoking, diet, and physical activity can worsen the risk of CVD [162]. A family history of CVD may indicate an increased genetic 

risk for the disease. Genetic testing and counseling may help to identify individuals at risk for CVD [163]. This may also include testing for 

specific genetic mutations linked to CVD and its related conditions [164]. Targeted screening for genetic mutations could improve prevention 

efforts for those at risk and lead to better outcomes for individuals with CVD [165, 166]. 

When a genetic variant is identified, potential lifestyle risk factors can be addressed, and personalized treatment approaches can be implemented 

[167]. These approaches might include medication or lifestyle interventions, depending on the severity of the condition [168]. Bleeding disorders 

represent the other half of the spectrum, as individuals can experience excessive bleeding, hematomas, or increased bleeding after trauma [169]. 

Genetic testing for CVD is considered an important tool for stratifying risk and personalizing treatment strategies that lead to better patient 

outcomes [170]. 

Genotyping patients are becoming increasingly common and being integrated into clinical practice guidelines for CVD prevention [171]. 

Through targeted genotyping for coagulation-related genes, clinicians can readily identify patients who might benefit from therapy and adjust 

treatment based on this genetic information [172]. Current evidence suggests there is an association between genetic and environmental factors 

and the risk of thrombosis development leading to CVD [173]. Many controversies exist as the clinical significance of coagulation genetics 

'findings is still under investigation, along with the cost-benefit analysis of genotyping for patients [174]. 

The recent focus is to include a comprehensive genetic examination in patients with vascular diseases to determine the underlying genetic 

constituency of thrombotic risk [175]. At-risk populations such as individuals with a family history of thrombosis, younger individuals with 

vascular diseases or thrombosis, and cryptogenic stroke patients can be potential candidates for genetic testing [176]. 

The information gained from genetic testing offers the possibility of therapy for individuals with genetic factors that contribute to the 

development of thrombophilia [177]. 

Personalized medicine based on genetic and phenotypic data offers an avenue to tailor treatments to those patients with the highest risk [178]. In 

summary, identifying coagulation-related genetic mutations through genetic testing and counseling and making appropriate interventions can 

significantly lower the risk of CVD [179]. While it remains unclear which patients will benefit most from genetic testing for CVD, it is clear that 

this technology is rapidly advancing and will become more accessible to patients and healthcare providers in the coming years [180]. Through 

genomic screening and personalized approaches, clinicians will have a powerful tool that increases the chances of preventing and treating CVD 

[181]. Ultimately, this may lead to better health outcomes and a reduction of cardiovascular disease morbidity and mortality worldwide [180, 

181]. Further research on understanding the role of genes in CVD-related phenotypes can help in developing better therapeutic practices and drug 

development [178]. 

MicroRNAs Related Coagulation 

MicroRNAs are small non-coding RNA molecules that regulate gene expression, including those involved in coagulation and cardiovascular 

disease (CVD) [182]. Dysregulation of coagulation can contribute to CVD, and microRNAs have been shown to play a role in various aspects of 

coagulation, including platelet activation, thrombin formation, and fibrinolysis [183]. Specific microRNAs implicated in coagulation in CVD 

include miR-1, miR-7, miR-21, miR-23a/b, miR-24, miR-26a, miR-29a/c, miR-30d, miR-31, miR-34a, miR-92a, miR-93, miR-96, miR-99a, 

miR-100, miR-126, miR-143, miR-145, miR-155, miR-181b, miR-191, miR-195, miR-206, miR-223, miR-296-5p, miR-342-3p, miR-433, miR-

497, miR-499, miR-505-5p, miR-508-3p, miR-532-5p, miR-574-5p, miR-590-3p, miR-605, and miR-664a-3p [182, 183]. 

These microRNAs have been found to regulate various coagulation-related genes, including those involved in platelet function, thrombin 

formation, and fibrinolysis [183]. 

These microRNAs have been found to regulate various coagulation-related genes, including those involved in platelet function, thrombin 

formation, and fibrinolysis [183]. Some microRNAs promote platelet activation and thrombosis, while others inhibit these processes [183, 184]. 

For example, miR-30a-5p has been shown to inhibit platelet aggregation and thrombosis by targeting the thromboxane A2 receptor [185]. 

MicroRNAs also play a role in the regulation of inflammation and other aspects of cardiovascular disease pathology [186, 187]. 

These microRNAs have been implicated in various aspects of coagulation in cardiovascular disease, including thrombosis and clotting disorders 

[188, 189].  
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For instance, miR-223 has been shown to regulate cell proliferation 

and apoptosis in lung adenocarcinoma cells via the regulation of 

FBXW7, a gene involved in coagulation [190]. Overall, microRNAs 

related to coagulation represent a promising area of research for the 

development of novel diagnostic and therapeutic approaches to CVD 

and other coagulation-related disorders [183, 184]. 

Mutations and Related Cardiovascular Diseases 

Mutations in the genetic sequence can play a significant role in the 

development of cardiovascular disease (CVD), which encompasses a 

range of conditions affecting heart and blood vessels [191]. 

Alterations in genes responsible for lipid metabolism, such as LDLR, 

APOB, PCSK9, LIPA, and ANGPTL3, can lead to the PCSK9onset 

of familial hypercholesterolemia and persistent elevation of LDL 

cholesterol levels, thereby accelerating the risk of CVD early in life 

[191] Fig 2. Additionally, mutations in genes regulating blood 

pressure and blood vessel endothelial function, such as ACE, AGT, 

NOS3, and FKBP5, are linked to an increased risk of CVD [192]. 

Mutations in the genes responsible for heart muscle structure, such as 

LMNA, MYBPC3, MYH7, TNNT2, BAG3, and ACTC1, can lead to 

hypertrophic, dilated, or restrictive cardiomyopathies and an 

increased likelihood of developing heart failure or arrhythmias, 

especially under conditions of exercise or stress [193]. 

Genetic mutations affecting other organs can also contribute to CVD 

risk, such as in the case of hereditary hemochromatosis (HFE gene 

mutation), amyloidosis (TTR gene mutation), Marfan syndrome 

(FBN1, TGFBR1, and TGFBR2 genes), cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) (COL4A1 and COL4A2 genes), and Alström syndrome 

(ALMS1 gene mutation) [194]. 

Finally, mutations in genes involved in the regulation of fatty acid 

metabolism and stress, such as FABP4 and HCN4, respectively, can 

also contribute to increased CVD risk [195]. Other genes that, when 

mutated, can lead to specific cardiac conditions include SCN5A, 

KCNQ1, KCNH2, RYR2, GJA5, GUCY1A3, KCNJ2, LMOD3, 

MYH6/MYL2, PCCA/PCCB, and PRKAG2 [196]. 

RNA Based Therapies as an Inhibitors in CVD 

MicroRNAs that exhibit active participation in pathophysiological 

processes often display elevated expression levels under normal 

conditions, significant dysregulation during disease states, and a 

predisposition for being present in both cells and tissues. Some 

examples of these microRNAs, for instance, miR-21-5p, which is the 

most abundant microRNA in cardiac macrophages, experiences a 

seven-fold upregulation in the myocardium of the transverse aortic 

constriction (TAC) model of ventricular pressure overload [197] 

Similarly, miR-29b-3p exhibits high expression levels in cardiac 

myocytes and undergoes approximately a three-fold upregulation 

following TAC [198]. 

The expression of miR-21-5p exhibits a significant increase in the 

human heart that is experiencing failure. In addition, there is a 

notable increase in the expression of miR-92a-3p in endothelial cells 

and its dysregulation in mouse models of vascular and myocardial 

tissue injury [199]. In patients with cardiac inflammation or 

corresponding animal models, there is an upregulation of miR-155-5p 

expression in immune cells [200]. MicroRNA-based therapies for 

CVD involve the modulation of microRNA expression levels to 

 

restore homeostasis or treat disease using a range of vectors, 

including viral vectors, nanoparticles, and conjugated molecules, 

which is stated in Table 5 [139]. One approach is the administration 

of microRNA mimics, which can restore or increase the expression of 

specific microRNAs associated with protective or therapeutic effects 

[139]. Another approach is the inhibition of specific microRNAs 

using antisense oligonucleotides or small molecule inhibitors, which 

can reduce the expression of a target microRNA in disease states 

[139]. Several microRNAs, such as miR-21, miR-34a, miR-126, 

miR-145, miR-155, and miR-33a, have been identified as the 

potential targets for therapy in CVD [139]. 

In animal models of CVD, miR-21 has been shown to promote 

angiogenesis and vascular repair, and miR-21 inhibitors have been 

developed for potential therapeutic use [201]. Inhibition of miR-34a 

has been shown to reduce atherosclerosis and endothelial dysfunction 

in mouse models of CVD [201]. 

miR-126 plays a protective role in endothelial function and 

angiogenesis, and miR-126 mimics have been developed for the 

potential treatment of CVD [202]. 

miR-145 is important in the regulation of smooth muscle cell function 

and has been implicated in the development of atherosclerosis [203]. 

miR-155 plays a role in inflammation and immune cell activation in 

CVD, and miR-155 inhibitors have been developed for potential 

therapeutic use [204]. 

In preclinical studies, inhibition of miR-33a has been shown to 

reduce atherosclerotic plaque formation and improve cholesterol 

metabolism [205]. 

miR-208a, which regulates cardiac hypertrophy and fibrosis, has also 

been identified as a potential therapeutic target for heart failure and 

other CVDs [206]. Several microRNA-based therapies have 

progressed to clinical trials for CVD, including miR-34a inhibitors 

and miR-92a mimics, with promising results [206]. 

Another potential therapeutic strategy is the use of microRNAs for 

the modulation of immune cell function in CVD, such as miR-146a 

[206] [207]. Nanoparticle-based delivery systems and conjugated 

microRNA therapies have been developed to increase the specificity 

and efficiency of microRNA delivery to targeted cells or tissues 

[208]. However, the delivery of microRNA-based therapies to target 

cells or tissues remains challenging due to issues of specificity, 

efficiency, and off-target effects [206]. Current limitations of 

microRNA-based therapies include issues of specificity, toxicity, and 

potential off-target effects on other molecular pathways [206]. 

Further research is needed to optimize the efficacy and safety of 

microRNA-based therapies for CVD [206]. Recent advances in gene 

editing technologies may provide new ways to modulate microRNA 

expression for therapeutic applications [206]. Integration of 

microRNA-based therapies with other treatment modalities, such as 

stem cell therapy or gene therapy, could provide synergistic effects 

for CVD, as seen in preclinical studies combining microRNA 

delivery with stem cell therapy [206]. Multi-targeted approaches, 

combining multiple microRNA mimics or inhibitors, may provide 

enhanced efficacy compared to single-targeted approaches [206]. The 

development of microRNA-based biomarkers for diagnostics and 

disease monitoring will lead to improved patient selection and 

treatment monitoring for microRNA-based therapies [206]. 

Regulatory approval of microRNA-based therapies will require 

rigorous scientific and regulatory review to ensure safety and efficacy 

and address ethical and legal considerations [206]. 
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Table 5. MicroRNAs in Cardiovascular Disease Therapy: Mechanisms, Status, and Future Directions 

MicroRNAs 
Potential Targets for Therapy in 

CVD 
Therapeutic Approaches Description Limitations and Future Directions 

miR-21 

Promotes angiogenesis and 

vascular repair; miR-21 inhibitors 

developed for potential therapeutic 

use 

Inhibition of Specific 

microRNAs 

Reduce the expression of a 

target microRNA in disease 

states 

Delivery Challenges: Issues of 

specificity, efficiency, and off-target 

effects 

miR-34a 

Inhibition reduces atherosclerosis 

and endothelial dysfunction in 

mouse models of CVD; miR-34a 

inhibitors progressed to clinical 

trials 

Inhibition of Specific 

microRNAs 

Reduce the expression of a 

target microRNA in disease 

states 

Current Limitations: Issues of 

specificity, toxicity, and potential off-

target effects on other molecular 

pathways 

miR-126 

Plays a protective role in 

endothelial function and 

angiogenesis; miR-126 mimics 

developed for potential treatment 

of CVD 

MicroRNA Mimics 

Restore or increase the 

expression of specific 

microRNAs associated with 

protective or therapeutic 

effects 

Further Research Needed: To optimize 

the efficacy and safety of microRNA-

based therapies for CVD 

miR-145 

Regulates smooth muscle cell 

function and implicated in the 

development of atherosclerosis 

- - 

Advances inGene Editing 

Technologies: May provide new ways 

to modulate microRNA expression for 

therapeutic applications 

miR-155 

Plays a role in inflammation and 

immune cell activation in CVD; 

miR-155 inhibitors developed for 

potential therapeutic use 

Inhibition of Specific 

microRNAs 

Reduce the expression of a 

target microRNA in disease 

states 

Development of microRNA-based 

Biomarkers: For diagnostics and 

disease monitoring 

miR-33a 

Inhibition shown to reduce 

atherosclerotic plaque formation 

and improve cholesterol 

metabolism in preclinical studies 

- - 

Regulatory Approval: Requires 

rigorous scientific and regulatory 

review to ensure safety and efficacy 

and address ethical and legal 

considerations 

miR-208a 

Regulates cardiac hypertrophy and 

fibrosis; identified as a potential 

therapeutic target for heart failure 

and other CVD 

- - 

Integration with Other Treatment 

Modalities: Combination with stem 

cell therapy or gene therapy for 

synergistic effects; Multi-Targeted 

Approaches: Combining multiple 

microRNA mimics or inhibitors for 

enhanced efficacy 

 

limitations of RNA-based therapies for CVD 

Currently, the primary limitation inhibiting the widespread utilization of miRNA is the inefficiency in delivering them to clinical settings. 

Unbound miRNAs are inherently unstable and would undergo rapid degradation upon entry into the systemic circulation, before reaching the 

intended tissue. The development of secure and effective carriers remains the most significant challenge in the realm of in vivo miRNA delivery. 

Consequently, the successful transition of miRNA therapeutics into clinical practice ultimately hinges upon the creation of a suitable delivery 

system that can safeguard the integrity of these small RNA molecules against nuclease degradation and facilitate their efficient transportation to 

the desired target tissues or cells, all while minimizing any adverse effects [209]. 

The effective and efficient transportation of miRNA mimics or antagomirs to specific tissues remains a substantial obstacle for miRNA-based 

therapies. Noteworthy limitations linked with miRNA transportation include vulnerability to decomposition by nucleases, swift elimination from 

the bloodstream, immunotoxicity, and limited tissue permeability. The application of chemical modifications to miRNAs has considerably 

enhanced their durability and offered safeguards against nucleases [210]. 

Epigenetic modifications in CVD pathogenesis 

Epigenetic modifications are heritable changes in the DNA that impact the expression and functionality of genes, while leaving the DNA 

sequence unaltered. One specific epigenetic process associated with human disease is DNA methylation, which is influenced by dietary factors. 

DNA methylation involves the addition of a 1-C molecule to cytosine groups within the DNA. When genes are methylated, they either do not 

undergo transcription or experience a reduced transcription rate. Hypomethylation of DNA can lead to increased expression of certain proto-

oncogenes, which are genes involved in cell proliferation or metastasis, thereby increasing the risk of cancer. Similarly, hypermethylation and 

reduced expression of tumor suppressor genes (e.g., DNA repair genes) can also contribute to cancer development [211]. DNA 

methyltransferases (DNMTs), in conjunction with the methyl donor molecule S-adenosylmethionine (SAM), facilitate the process of DNA 

methylation. Aberrant DNA methylation has been implicated not only in the onset of human cancer but also in cardiovascular disease. 

Polyphenols, a category of phytochemicals that are consumed in considerable quantities in the human diet, have an impact on the risk of cancer 

and heart diseases like CVD [212]. 
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Discussion 

The relationship between related genes and microRNAs (miRNAs) in 

the pathogenesis of cardiovascular disease (CVD) is complex, and 

many studies have investigated the roles of specific miRNAs and 

genes in cardiovascular function and disease. 

Evidence suggests that numerous genes are involved in CVD 

pathogenesis, and many are associated with specific CVD risk 

factors, such as hypertension or diabetes. These genes impact many 

crucial cellular processes, including lipid metabolism, inflammation, 

and cell proliferation and differentiation, with their expression often 

closely regulated by miRNAs. Hence, dysregulation of miRNAs 

plays a significant role in the development and progression of CVD. 

MiRNAs have been identified as crucial regulators of gene 

expression involved in various pathological processes of CVD, such 

as angiogenesis, inflammation, and hypertension. The regulation and 

dysregulation of miRNAs expression levels affect the expression of 

genes involved in these processes, culminating in the manifestation of 

CVD.  

Recent studies have shown that targeting specific miRNAs or 

combinations of miRNAs may help create novel therapeutic 

approaches to treat CVD. One such approach is through regulating 

the expression of genes and signaling pathways that play a role in 

CVD pathogenesis.  

In addition to CVD management, miRNAs expression levels could 

also serve as biomarkers for CVD risk stratification, diagnosis, and 

monitoring of patients with CVD. Cardiologists and other medical 

professionals can use noninvasive measures such as blood tests to 

measure miRNA concentrations, allowing for quick and accurate 

clinical assessments of patients with CVD risk. 

However, despite the wealth of information that has been generated 

in this field, the exact mechanisms by which miRNAs and related 

genes contribute to CVD pathogenesis remain largely unknown. 

Further research will be necessary to define these mechanisms and 

develop more effective therapeutic approaches against CVD. 

Conclusion 

In conclusion, microRNAs (miRNAs) and genes play a pivotal role in 

the pathogenesis of cardiovascular disease (CVD). miRNAs regulate 

many important physiological processes including promoting and 

inhibiting angiogenesis, controlling inflammation and lipid 

metabolism, and preventing undesirable myocardial hypertrophy and 

fibrosis. It has been found that the dysregulation of particular 

miRNAs is a major contributor to the pathogenesis of CVD, and 

targeting these miRNAs holds promise as a therapeutic approach. 

Moreover, genes related to CVD impact one's risk of developing this 

condition, and the expression of these genes is often closely regulated 

by miRNAs. Through a complex interaction between genes and 

miRNAs, CVD manifests through different subtypes such as coronary 

artery disease, heart failure, and valvular disease.  

The detailed relationship between various genes and miRNAs 

involved in CVD is still emerging as research in the field continues. 

However, the identification of pathway targets regulated by 

microRNAs provides promising therapeutic targets for developing 

novel therapeutic interventions against CVD. Further research could 

help widen the knowledge of the regulatory networks that influence 

CVD pathogenesis, and identify new and more effective therapeutic 

avenues for treating and preventing CVD. 
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