Background: Beta-thalassemia is a group of hereditary blood disorders caused by mutations in the β-globin gene cluster resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. This study aimed to produce an in vitro model of β-thalassemia using CRISPR/Cas9 as an easily programmable, fast, more powerful, and efficient technique. Materials and Methods: Guide RNA (gRNA)-Cas9 co-expression vectors were used for embryonic stem (ES) cell nucleofection. PCR, T7EI, and Hbb-b1 gene sequencing tests were done on extracted DNA to evaluate gene mutation. Following erythroid differentiation of ES cells, analysis of hemoglobin genes and erythroid transcription factors were assessed using a quantitative reverse transcription-polymerase chain reaction. Results: Sequencing data associated with clone 31 confirmed the deletion of 851 nucleotides between exon 2 and 3 in an Hbb-b1 allele in this clone and Indel mutation in exon 2 (-40bp/+38bp) from another allele of Hbb-b1. Significant expression of erythroid transcription factors was observed in wild type, Hbb-b1+/- and Hbb-b1-/- groups. The hbb-b1 gene expression in the Hbb-b1+/- group significantly decreased, although the Hbb-b1-/- group had zero expression. Conclusion: Utilizing an efficient erythroid differentiation method on the CRISPR/Cas9-mediated Hbb-b1 knock-out in ES cells provides accessibility to the laboratory thalassemia model. This method could be used to produce a mouse model of β-thalassemia intermedia (Hbbth1/th1 mice), which are required for the identification of the molecular basis of β-thalassemia and enable testing of the therapeutic approaches such as the recovery of functional β or γ hemoglobin chain.
Type of Study: Research |
Subject: Gene expression Received: 2023/03/15 | Accepted: 2023/05/20 | Published: 2023/05/20
References
1. Babker AM. An Overview on Thalassemia and Challenges During COVID-19. International Journal of Health Sciences. 2022(I):3207-20. [DOI:10.53730/ijhs.v6nS1.5446]
2. Nasiri A, Rahimi Z, Vaisi-Raygani A. Hemoglobinopathies in Iran: an updated review. International Journal of Hematology-Oncology and Stem Cell Research. 2020;14(2):140. [DOI:10.18502/ijhoscr.v14i2.2679] [PMID] []
3. Skow L, Burkhart B, Johnson F, Popp R, Popp D, Goldberg S, et al. A mouse model for β-thalassemia. Cell. 1983;34(3):1043-52. [DOI:10.1016/0092-8674(83)90562-7] [PMID]
4. Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O. A mouse model for beta 0-thalassemia. Proceedings of the National Academy of Sciences. 1995;92(25):11608-12. [DOI:10.1073/pnas.92.25.11608] [PMID] []
5. Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100(4):418. [DOI:10.3324/haematol.2014.114827] [PMID] []
6. Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nature Reviews Genetics. 2001;2(10):769-79. [DOI:10.1038/35093556] [PMID]
7. Ginzburg Y, Rivella S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood, The Journal of the American Society of Hematology. 2011;118(16):4321-30. [DOI:10.1182/blood-2011-03-283614] [PMID] []
8. Ciavatta DJ, Ryan TM, Farmer SC, Townes TM. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj-and beta min-globin genes in embryonic stem cells. Proceedings of the National Academy of Sciences. 1995;92(20):9259-63. [DOI:10.1073/pnas.92.20.9259] [PMID] []
9. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. [DOI:10.1126/science.1247997] [PMID] []
10. Grobarczyk B, Franco B, Hanon K, Malgrange B. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Reviews and Reports. 2015;11:774-87. [DOI:10.1007/s12015-015-9600-1] [PMID]
11. Wattanapanitch M, Damkham N, Potirat P, Trakarnsanga K, Janan M, U-pratya Y, et al. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Stem cell research & therapy. 2018;9:1-11. [DOI:10.1186/s13287-018-0779-3] [PMID] []
12. Patsali P, Turchiano G, Papasavva P, Romito M, Loucari CC, Stephanou C, et al. Correction of IVS I-110 (G> A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica. 2019;104(11):e497. [DOI:10.3324/haematol.2018.215178] [PMID] []
13. Kalish Y, Malyutin Z, Shai E, Dana M, Avraham L, Jahshan N, et al. A mouse model to study thrombotic complications of thalassemia. Thrombosis Research. 2015;135(3):521-5. [DOI:10.1016/j.thromres.2014.12.023] [PMID]
14. Li H, Rybicki AC, Suzuka SM, Von Bonsdorff L, Breuer W, Hall CB, et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nature medicine. 2010;16(2):177-82. [DOI:10.1038/nm.2073] [PMID]
15. Liu J, Zhang J, Ginzburg Y, Li H, Xue F, De Franceschi L, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis. Blood, The Journal of the American Society of Hematology. 2013;121(8):e43-e9. [DOI:10.1182/blood-2012-09-456079] [PMID] []
16. Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood, The Journal of the American Society of Hematology. 2014;123(25):3864-72. [DOI:10.1182/blood-2013-06-511238] [PMID] []
17. Wang L, Sertorio J, McTiernan C, Bachman T, Baust J, Xiong Z, et al. Red Blood Cell Derived Microparticles Contribute to Development of Post-Splentomy Pulmonary Hypertension in a Thalassemic Murine Model. C27 BALLROOM (PH) BLITZ: BASIC BIOLOGY: American Thoracic Society; 2018. p. A4612-A.
18. Rivella S, May C, Chadburn A, Rivière I, Sadelain M. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human β-globin gene transfer. Blood, The Journal of the American Society of Hematology. 2003;101(8):2932-9. [DOI:10.1182/blood-2002-10-3305] [PMID]
19. Weizer‐Stern O, Adamsky K, Amariglio N, Rachmilewitz E, Breda L, Rivella S, et al. mRNA expression of iron regulatory genes in β‐thalassemia intermedia and β‐thalassemia major mouse models. American journal of hematology. 2006;81(7):479-83. [DOI:10.1002/ajh.20549] [PMID]
20. Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, et al. Recent trends in the gene therapy of β-thalassemia. Journal of blood medicine. 2015:69-85. [DOI:10.2147/JBM.S46256] [PMID] []
Ajami M, Moeini O, Atashi A, Soleimani M, Dehghani H, Ajami M. Highly efficient ESC genome editing with CRISPR/Cas9 for production of laboratory models. jhgg 2023; 7 (1) URL: http://humangeneticsgenomics.ir/article-1-87-en.html