Background: Breast cancer (BC) is the second leading cause of death due to cancer among women worldwide. Therefore, the present study investigates the cytotoxic effects of piperine on the breast cancer cell line (MCF7) and the genes of the apoptotic pathway. Objectives: This research was performed to assess the effect of piperine on BC cells and the change in the expression level of bax gene through the induction of apoptosis. Methods: MCF-7 cells were prepared by the Pasteur Institute, Iran. Cytotoxicity of piperine at concentrations of (5, 10, 15, 20, and 25 µM) during 24, 48, and 72 hours was evaluated by MTT assay. The cell apoptosis and bax gene expression wereevaluated by Flow Cytometry and qReal-time PCR, respectively. Finally, the statistical analysis of MTT and RT- PCR data was done by SPSS software version 22. Results: The piperine showed concentration-dependent cytotoxic effects on the MCF-7 cell line in MTT assay. The bax gene expression level has a significant increase in piperine-treated cells compared to the untreated ones. The MCF-7 cell apoptosis at IC50 concentration of piperine was measured at 58.3% during 48-h treatment. Conclusions: In general, it can be concluded that piperine has cytotoxic effects against breast cancer by inducing apoptosis via overexpressing of bax.
Type of Study: Research |
Subject: Gene expression Received: 2023/10/26 | Accepted: 2024/02/29 | Published: 2024/03/1
References
1. Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci. 2021;269:119087. [DOI:10.1016/j.lfs.2021.119087] [PMID]
2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA: a cancer J for clin. 2019;69(5):363-85. [DOI:10.3322/caac.21565] [PMID]
3. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP. Risk factors and preventions of breast cancer. Int J of bio sci. 2017;13(11):1387. [DOI:10.7150/ijbs.21635] [PMID] []
5. Saravanakumar K, Anbazhagan S, Usliyanage JP, Naveen KV, Wijesinghe U, Xiaowen H, Priya VV, Thiripuranathar G, Wang MH. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int Immunopharmacol. 2022;103:108433. [DOI:10.1016/j.intimp.2021.108433] [PMID]
6. Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer-A review of in vitro research. Bio & Pharmacol. 2021;144:112342. [DOI:10.1016/j.biopha.2021.112342] [PMID]
7. Marta GN, Riera R, Pacheco RL, Martimbianco AL, Meattini I, Kaidar-Person O, Poortmans P. Moderately hypofractionated post-operative radiation therapy for breast cancer: Systematic review and meta-analysis of randomized clinical trials. The Breast. 2022;62:84-92. [DOI:10.1016/j.breast.2022.01.018] [PMID] []
8. Klochkov SG, Neganova ME, Nikolenko VN, Chen K, Somasundaram SG, Kirkland CE, Aliev G. Implications of nanotechnology for the treatment of cancer: Recent advances. InSeminars in cancer bio 2021;(Vol. 69, pp. 190-199). Academic Press. [DOI:10.1016/j.semcancer.2019.08.028] [PMID]
9. Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Research. 2023;37(2):438-51. [DOI:10.1002/ptr.7625] [PMID]
10. Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother research. 2021;35(2):680-700. [DOI:10.1002/ptr.6855] [PMID]
11. Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci. 2022:120984. [DOI:10.1016/j.lfs.2022.120984] [PMID]
12. Calabrese V, Bates TE, Mancuso C, Cornelius C, Ventimiglia B, Cambria MT, Di Renzo L, De Lorenzo A, Dinkova‐Kostova AT. Curcumin and the cellular stress response in free radical‐related diseases. Mol nutrition & food research. 2008;52(9):1062-73. [DOI:10.1002/mnfr.200700316] [PMID]
13. Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother Research. 2023. [DOI:10.1002/ptr.7737] [PMID]
14. Nayana P, Manjunatha H, Gollapalli P, Ashok AK, Karal Andrade P, V V. A combined in vitro and molecular dynamics simulation studies unveil the molecular basis of the anticancer potential of piperine targeting AKT1 against prostate cancer. J of Biomol Structure and Dynamics. 2023;1-4. [PubMed ID: 37272194]. [DOI:10.1080/07391102.2023.2220045] [PMID]
15. Zhong M, Chen L, Tao Y, Zhao J, Chang B, Zhang F, Tu J, Cai W, Zhang B. Synthesis and evaluation of Piperine analogs as thioredoxin reductase inhibitors to cause oxidative stress-induced cancer cell apoptosis. Bioorg Chemi. 2023;106589. [DOI:10.1016/j.bioorg.2023.106589] [PMID]
16. Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Research. 2022;36(1):147-63. [DOI:10.1002/ptr.7291] [PMID]
17. Mitra S, Anand U, Jha NK, Shekhawat MS, Saha SC, Nongdam P, Rengasamy KR, Proćków J, Dey A. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives. Frontiers in Pharmacol. 2022;12:772418. [DOI:10.3389/fphar.2021.772418] [PMID] []
18. Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nature Reviews Mol Cell Bio. 2023;1-7. [DOI:10.1038/s41580-023-00629-4] [PMID]
19. Wang Y, Sun H, Zhang J, Xia Z, Chen W. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2, Bax/Bcl2, and caspase-3 pathways. Biosci, Biotechnol, and Biochemi. 2020;84(12):2533-44. [DOI:10.1080/09168451.2020.1815170] [PMID]
20. Green DR. The mitochondrial pathway of apoptosis Part II: The BCL-2 protein family. Cold Spring Harbor Perspectives in Bio. 2022;14(6):a041046. [DOI:10.1101/cshperspect.a041046] [PMID] []
21. Gourisankar S, Krokhotin A, Ji W, Liu X, Chang CY, Kim SH, Li Z, Wenderski W, Simanauskaite JM, Yang H, Vogel H. Rewiring cancer drivers to activate apoptosis Nature. 2023;1-9. [DOI:10.1101/2022.12.04.517548]
22. Pazouki N, Irani S, Olov N, Atyabi SM, Bagheri-Khoulenjani S. Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Progress in biomaterials. 2022;11(1):43-54. [DOI:10.1007/s40204-021-00178-z] [PMID] []
23. Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother research. 2021;35(2):680-700. [DOI:10.1002/ptr.6855] [PMID]
24. Rather RA, Bhagat M. Cancer chemoprevention and piperine: molecular mechanisms and therapeutic opportunities. Frontiers in cell and developmental bio. 2018;6:10. [DOI:10.3389/fcell.2018.00010] [PMID] []
25. Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Research. 2013;27(8):1121-30. [DOI:10.1002/ptr.4972] [PMID]
26. Yoo ES, Choo GS, Kim SH, Woo JS, Kim HJ, Park YS, Kim BS, Kim SK, Park BK, Cho SD, Nam JS. Antitumor and apoptosis-inducing effects of piperine on human melanoma cells. Anticancer Research. 2019;39(4):1883-92 [DOI:10.21873/anticanres.13296] [PMID]
27. Siddiqui S, Ahamad MS, Jafri A, Afzal M, Arshad M. Piperine triggers apoptosis of human oral squamous carcinoma through cell cycle arrest and mitochondrial oxidative stress. Nutrition and cancer. 2017;69(5):791-9. [DOI:10.1080/01635581.2017.1310260] [PMID]
28. Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG. Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food chemi. 2013;141(3):2591-9. [DOI:10.1016/j.foodchem.2013.04.125] [PMID]
29. Park UH, Jeong HS, Jo EY, Park T, Yoon SK, Kim EJ, Jeong JC, Um SJ. Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J of agricultural and food chemi. 2012;60(15):3853-60. [DOI:10.1021/jf204514a] [PMID]
30. Pal MK, Jaiswar SP, Srivastav AK, Goyal S, Dwivedi A, Verma A, Singh J, Pathak AK, Sankhwar PL, Ray RS. Synergistic effect of piperine and paclitaxel on cell fate via cyt-c, Bax/Bcl-2-caspase-3 pathway in ovarian adenocarcinomas SKOV-3 cells. Eur J of Pharmacol.2016;791:751-62. [DOI:10.1016/j.ejphar.2016.10.019] [PMID]
31. Qi Y, Yao L, Liu J, Wang W. Piperine improves the sensitivity of osteosarcoma cells to doxorubicin by inducing apoptosis and inhibiting the PI3K/AKT/GSK-3β pathway. J of Orthopaedic Surgery and Research. 2023;18(1):1-2. [DOI:10.1186/s13018-023-03642-7] [PMID] []
32. Zare Z, Dizaj TN, Lohrasbi A, Sheikhalishahi ZS, Panji M, Hosseinabadi F, Najafi V, Abazari O, Abbasi M, Khanicheragh P. The effect of piperine on MMP-9, VEGF, and E-cadherin expression in breast cancer MCF-7 cell line. Basic & Clinical Cancer Research. 2020;12(3):112-9. [DOI:10.18502/bccr.v12i3.5767]
33. Fattah A, Morovati A, Niknam Z, Mashouri L, Asadi A, Rizi ST, Abbasi M, Shakeri F, Abazari O. The synergistic combination of cisplatin and piperine induces apoptosis in MCF-7 cell line. Iranian J of Public Health. 2021;50(5):1037. [DOI:10.18502/ijph.v50i5.6121] [PMID] []
34. Al-Wahaibi LH, Mahmoud MA, Mostafa YA, Raslan AE, Youssif BG. Novel piperine-carboximidamide hybrids: Design, synthesis, and antiproliferative activity via a multi-targeted inhibitory pathway. J of Enzyme Inhibition and Medicinal Chemi.2023;38(1):376-86. [DOI:10.1080/14756366.2022.2151593] [PMID] []
Naseh V, Rezaeidian J, Entezari M, Ziyadi H, Hashemi M. Piperine has anti-tumor effects in breast cancer by inducing mitochondrial apoptosis pathway. jhgg 2023; 7 (1) URL: http://humangeneticsgenomics.ir/article-1-97-en.html