[Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Instructions for Authors::
Instructions for Reviewers::
Checklists::
Articles archive::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 1 (5-2023) ::
jhgg 2023, 7(1): 0-0 Back to browse issues page
Decoding the Interplay of Genes and MicroRNAs in Cardiovascular Disease
Amir Gholamzad , Melina Moulaeian , Mahsa Khatibi , Mohammadmatin Nourikhani , Mehrdad Gholamzad * , Yalda Goudarzi
Abstract:   (139 Views)
Cardiovascular disease (CVD) is a leading cause of death worldwide, and it has been found to have a strong genetic component. In recent years, there has been much interest in the role of microRNAs (miRNAs) in CVD. miRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally by binding to the 3' untranslated region (UTR) of target mRNAs. Many studies have shown that miRNAs play a crucial role in various physiological processes, including the regulation of cellular functions involved in the development of CVD.
Several miRNAs have been identified that are involved in the pathogenesis of CVD, and some of them are associated with specific cardiovascular risk factors, such as hypertension or diabetes. It has been suggested that targeting specific miRNAs or combinations of miRNAs could serve as a novel therapeutic approach for CVD.
Moreover, studies have also shown that certain genes are involved in CVD risk and progression leading to different clinical manifestations like coronary artery disease, heart failure, and valvular disease. Some of these genes are involved in lipid metabolism, inflammation, and cell proliferation and differentiation, and their expression is regulated by miRNAs.
In conclusion, a complex interaction between genes and miRNAs contributes to CVD pathogenesis, and further research is required to fully understand the mechanisms involved. Nevertheless, the identification of specific miRNAs that are involved in CVD provides potential targets for future therapeutics.
Keywords: MicroRNA, CVD, Genes
Full-Text [PDF 849 kb]   (70 Downloads)    
Type of Study: Review | Subject: Human Genetics
Received: 2023/06/2 | Accepted: 2024/04/14 | Published: 2023/05/20
References
1. Organiziation WH. Cardiovascular diseases.
2. Association AH. Cardiovascular Disease.
3. Mahmanzar M, Houseini ST, Rahimian K, Namini AM, Gholamzad A, Tokhanbigli S, et al. The First Geographic Identification by Country of Sustainable Mutations of SARS-COV2 Sequence Samples: Worldwide Natural Selection Trends. bioRxiv. 2022. [DOI:10.1101/2022.07.18.500565]
4. van Rooij E. The art of microRNA research. Circ Res. 2011;108:219-34. [DOI:10.1161/CIRCRESAHA.110.227496] [PMID]
5. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123:11-8. [DOI:10.1172/JCI62876] [PMID] []
6. Azimi Mohamadabadi M, Hassan ZM, Zavaran Hosseini A, Gholamzad M, Noori S, Mahdavi M, et al. Arteether exerts antitumor activity and reduces CD4+CD25+FOXP3+ T-reg cells in vivo. Iran J Immunol. 2013;10:139-49.
7. Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39:2704-16. [DOI:10.1093/eurheartj/ehx165] [PMID] []
8. Azimi M, Aslani S, Mortezagholi S, Salek A, Javan MR, Rezaiemanesh A, et al. Identification, Isolation, and Functional Assay of Regulatory T Cells. Immunol Invest. 2016;45:584-602. [DOI:10.1080/08820139.2016.1193869] [PMID]
9. Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clinical application. Clin Chem Lab Med. 2017;55:687-704. [DOI:10.1515/cclm-2016-0576] [PMID]
10. Morovati H, Seyyedtabaei Sj, Gholamzad M. Evaluation of a Newly Designed Immunochromatographic Test using Gold Nanoparticles and Recombinant Antigen gra7 for Rapid Diagnosis of Human Toxoplasmosis. Iran-J-Med-Microbiol. 2020;14:101-15. [DOI:10.30699/ijmm.14.1.101]
11. Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf). 2015;213:60-83. [DOI:10.1111/apha.12416] [PMID]
12. Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest. 2022;132. [DOI:10.1172/JCI159179] [PMID] []
13. Cui M-Y, Yi X, Zhu D-X, Wu J. Identification of Differentially Expressed Genes Related to the Lipid Metabolism of Esophageal Squamous Cell Carcinoma by Integrated Bioinformatics Analysis. Current Oncology. 2023;30:1-18. [DOI:10.3390/curroncol30010001] [PMID] []
14. Peng Y, Tang Q, Xiao F, Fu N. Regulation of Lipid Metabolism by Lamin in Mutation-Related Diseases. Frontiers in Pharmacology. 2022;13. [DOI:10.3389/fphar.2022.820857] [PMID] []
15. Lyu W, Xiang Y, Wang X, Li J, Yang C, Yang H, et al. Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents. Oxidative Medicine and Cellular Longevity. 2022;2022:2315575. [DOI:10.1155/2022/2315575] [PMID] []
16. A New lncRNA, lnc-LLMA, Regulates Lipid Metabolism in Pig Hepatocytes. DNA and Cell Biology. 2022;41:202-14. [DOI:10.1089/dna.2021.0220] [PMID]
17. Gomez-Cano F, Chu Y-H, Cruz-Gomez M, Abdullah HM, Lee YS, Schnell DJ, et al. Exploring Camelina sativa lipid metabolism regulation by combining gene co-expression and DNA affinity purification analyses. The Plant Journal. 2022;110:589-606. [DOI:10.1111/tpj.15682] [PMID]
18. Knoblauch H, Schuster H, Luft FC, Reich J. A pathway model of lipid metabolism to predict the effect of genetic variability on lipid levels. Journal of Molecular Medicine. 2000;78:507-15 [DOI:10.1007/s001090000156] [PMID]
19. Tommaso M. Nuclear Receptors in the Regulation of Lipid Metabolism. Current Cardiovascular Risk Reports. 2010;4:142-9. [DOI:10.1007/s12170-010-0080-1]
20. Dogliotti G, Galliera E, Licastro F, Porcellini E, Corsi MM. Serum neutrophil gelatinase-B associated lipocalin (NGAL) levels in Down's syndrome patients. Immunity & Ageing : I & A. 2010;7:S7 - S. [DOI:10.1186/1742-4933-7-S1-S7] [PMID] []
21. Daimiel L, Vargas T, Ramírez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. ELECTROPHORESIS. 2012;33:2266-89. [DOI:10.1002/elps.201200084] [PMID]
22. Tromp TR, Stroes ESG, Hovingh GK. Gene-based therapy in lipid management: the winding road from promise to practice. Expert Opinion on Investigational Drugs. 2020;29:483-93. [DOI:10.1080/13543784.2020.1757070] [PMID]
23. Vaessen FCS, Twisk J, Kastelein JPJ, Kuivenhoven JA. Gene Therapy in Disorders of Lipoprotein Metabolism. Current Gene Therapy. 2007;7:35-47. [DOI:10.2174/156652307779940261] [PMID]
24. Dubé JB, Hegele RA. The application of gene therapy in lipid disorders: where are we now? Clinical Lipidology. 2012;7:419-29. [DOI:10.2217/clp.12.42]
25. Diaz SO, Sánchez-Quesada JL, de Freitas V, Leite-Moreira A, Barros AS, Reis A. Exploratory analysis of large-scale lipidome in large cohorts: are we any closer of finding lipid-based markers suitable for CVD risk stratification and management? Analytica Chimica Acta. 2021;1142:189-200. [DOI:10.1016/j.aca.2020.10.037] [PMID]
26. The Emerging Risk Factors C. Lipid-Related Markers and Cardiovascular Disease Prediction. JAMA. 2012;307:2499-506. [DOI:10.1001/jama.2012.6571]
27. Middelberg RPS, Ferreira MAR, Henders AK, Heath AC, Madden PAF, Montgomery GW, et al. Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Medical Genetics. 2011;12:123. [DOI:10.1186/1471-2350-12-123] [PMID] []
28. Wang J-G, Staessen JA. Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. European Journal of Pharmacology. 2000;410:289-302. [DOI:10.1016/S0014-2999(00)00822-0] [PMID]
29. Palomaki GE, Melillo S, Neveux L, Douglas MP, Dotson WD, Janssens ACJW, et al. Use of genomic profiling to assess risk for cardiovascular disease and identify individualized prevention strategies-A targeted evidence-based review. Genetics in Medicine. 2010;12:772-84. [DOI:10.1097/GIM.0b013e3181f8728d] [PMID]
30. Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. Journal of the American College of Cardiology. 2018;72:1883-93. [DOI:10.1016/j.jacc.2018.07.079] [PMID] []
31. Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. Journal of Diabetes & Metabolic Disorders. 2021;20:1793-805. [DOI:10.1007/s40200-021-00840-0] [PMID] []
32. Lee M-S, Flammer AJ, Lerman LO, Lerman A. Personalized Medicine in Cardiovascular Diseases. Korean Circ J. 2012;42:583-91. [DOI:10.4070/kcj.2012.42.9.583] [PMID] []
33. Zhanpeng J, Oresko J, Shimeng H, Cheng AC. HeartToGo: A Personalized medicine technology for cardiovascular disease prevention and detection. 2009 IEEE/NIH Life Science Systems and Applications Workshop2009. p. 80-3. [DOI:10.1109/LISSA.2009.4906714]
34. Currie G, Delles C. Precision Medicine and Personalized Medicine in Cardiovascular Disease. In: Kerkhof PLM, Miller VM, editors. Sex-Specific Analysis of Cardiovascular Function. Cham: Springer International Publishing; 2018. p. 589-605. [DOI:10.1007/978-3-319-77932-4_36] [PMID]
35. deGoma EM, Rivera G, Lilly SM, Usman MHU, Mohler ER. Personalized vascular medicine: Individualizing drug therapy. Vascular Medicine. 2011;16:391-404. [DOI:10.1177/1358863X11422251] [PMID] []
36. Lenfant C. Prospects of personalized medicine in cardiovascular diseases. Metabolism. 2013;62:S6-S10. [DOI:10.1016/j.metabol.2012.08.018] [PMID]
37. Battineni G, Sagaro GG, Chintalapudi N, Amenta F. The Benefits of Telemedicine in Personalized Prevention of Cardiovascular Diseases (CVD): A Systematic Review. Journal of Personalized Medicine. 2021;11:658. [DOI:10.3390/jpm11070658] [PMID] []
38. Marrades MP, González-Muniesa P, Martínez JA, Moreno-Aliaga MJ. A Dysregulation in CES1, APOE and Other Lipid Metabolism-Related Genes Is Associated to Cardiovascular Risk Factors Linked to Obesity. Obesity Facts. 2010;3:312-8. [DOI:10.1159/000321451] [PMID] []
39. Rader DJ, Maugeais C. Genes influencing HDL metabolism: new perspectives and implications for atherosclerosis prevention. Molecular Medicine Today. 2000;6:170-5. [DOI:10.1016/S1357-4310(00)01673-7] [PMID]
40. Ylä-Herttuala S, Baker AH. Cardiovascular Gene Therapy: Past, Present, and Future. Molecular Therapy. 2017;25:1095-106. [DOI:10.1016/j.ymthe.2017.03.027] [PMID] []
41. Bradshaw AC, Baker AH. Gene therapy for cardiovascular disease: Perspectives and potential. Vascular Pharmacology. 2013;58:174-81. [DOI:10.1016/j.vph.2012.10.008] [PMID]
42. Sierra-Johnson J, Fisher RM, Romero-Corral A, Somers VK, Lopez-Jimenez F, Öhrvik J, et al. Concentration of apolipoprotein B is comparable with the apolipoprotein B/apolipoprotein A-I ratio and better than routine clinical lipid measurements in predicting coronary heart disease mortality: findings from a multi-ethnic US population. European Heart Journal. 2008;30:710-7. [DOI:10.1093/eurheartj/ehn347] [PMID] []
43. Whayne TF, Alaupovic P, Curry MD, Lee ET, Anderson PS, Schechter E. Plasma apolipoprotein B and VLDL-, LDL-, and HDL- cholesterol as risk factors in the development of coronary artery disease in male patients examined by angiography. Atherosclerosis. 1981;39:411-24. [DOI:10.1016/0021-9150(81)90026-5] [PMID]
44. Miller NE. CETP inhibitors and cardiovascular disease: Time to think again. F1000Research. 2014;3:124. [DOI:10.12688/f1000research.4396.1] [PMID] []
45. Schmidt AF, Hunt NB, Gordillo-Marañón M, Charoen P, Drenos F, Kivimaki M, et al. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nature Communications. 2021;12:5640. [DOI:10.1038/s41467-021-25703-3] [PMID] []
46. Franceschini N, Muallem H, Rose KM, Boerwinkle E, Maeda N. Low density lipoprotein receptor polymorphisms and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Journal of Thrombosis and Haemostasis. 2009;7:496-8. [DOI:10.1111/j.1538-7836.2008.03262.x] [PMID] []
47. Han Y, Zhang Y, Liu S, Chen G, Cao L, Xin Y. Association of LDLR rs1433099 with the Risk of NAFLD and CVD in Chinese Han Population. Journal of Clinical and Translational Hepatology. 2021;000:000-. https://doi.org/10.14218/JCTH.2020.00163 https://doi.org/10.14218/JCTP.2023.00005 https://doi.org/10.14218/JCTH.2021.00018 https://doi.org/10.14218/JCTH.2020.00185 [DOI:10.14218/JCTH.2020.00159] [PMID] []
48. Xie L, Li Y-M. Lipoprotein Lipase (LPL) Polymorphism and the Risk of Coronary Artery Disease: A Meta-Analysis. International Journal of Environmental Research and Public Health. 2017;14:84. [DOI:10.3390/ijerph14010084] [PMID] []
49. Ma W-Q, Wang Y, Han X-Q, Zhu Y, Liu N-F. Associations between LPL gene polymorphisms and coronary artery disease: evidence based on an updated and cumulative meta-analysis. Bioscience Reports. 2018;38. [DOI:10.1042/BSR20171642] [PMID] []
50. Wang J, Xiao Q, Wang L, Wang Y, Wang D, Ding H. Role of ABCA1 in Cardiovascular Disease. Journal of Personalized Medicine. 2022;12:1010. [DOI:10.3390/jpm12061010] [PMID] []
51. An F, Liu C, Wang X, Li T, Fu H, Bao B, et al. Effect of ABCA1 promoter methylation on premature coronary artery disease and its relationship with inflammation. BMC Cardiovasc Disord. 2021;21:78. [DOI:10.1186/s12872-021-01894-x] [PMID] []
52. Jiang X-C. Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. In: Jiang X-C, editor. Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Singapore: Springer Singapore; 2020. p. 1-13. [DOI:10.1007/978-981-15-6082-8_1] [PMID] []
53. Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep. 2021;23:9. [DOI:10.1007/s11883-021-00907-6] [PMID] []
54. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22:425-38. [DOI:10.1038/s41580-021-00354-w] [PMID] []
55. Yang Z, Cappello T, Wang L. Emerging role of microRNAs in lipid metabolism. Acta Pharmaceutica Sinica B. 2015;5:145-50. [DOI:10.1016/j.apsb.2015.01.002] [PMID] []
56. Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, et al. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie. 2021;187:83-93. [DOI:10.1016/j.biochi.2021.05.015] [PMID]
57. Masoudi F, Sharifi MR, Pourfarzam M. Investigation of the relationship between miR-33a, miR-122, erythrocyte membrane fatty acids profile, and serum lipids with components of metabolic syndrome in type 2 diabetic patients. Research in Pharmaceutical Sciences. 2022;17. [DOI:10.4103/1735-5362.343078] [PMID] []
58. Lu R-H, Jia S-Z, Yang F, Qin C-B, Zhang Y-R, Meng X-L, et al. The function of miR-122 in the lipid metabolism and immunity of grass carp (Ctenopharyngodon idellus). Aquaculture Reports. 2020;17:100401. [DOI:10.1016/j.aqrep.2020.100401]
59. Fernández-Hernando C, Suárez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol. 2011;22:86-92. [DOI:10.1097/MOL.0b013e3283428d9d] [PMID] []
60. Novák J, Bienertová-Vašků J, Kára T, Novák M. MicroRNAs Involved in the Lipid Metabolism and Their Possible Implications for Atherosclerosis Development and Treatment. Mediators of Inflammation. 2014;2014:275867. [DOI:10.1155/2014/275867] [PMID] []
61. Mekala N, Kurdys J, Vicenzi AP, Weiler LR, Avramut C, Vazquez EJ, et al. MiR 208a Regulates Mitochondrial Biogenesis in Metabolically Challenged Cardiomyocytes. Cells. 2021;10:3152. [DOI:10.3390/cells10113152] [PMID] []
62. Liu H, Yang N, Fei Z, Qiu J, Ma D, Liu X, et al. Analysis of plasma miR-208a and miR-370 expression levels for early diagnosis of coronary artery disease. Biomed Rep. 2016;5:332-6. [DOI:10.3892/br.2016.726] [PMID] []
63. Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Frontiers in Cardiovascular Medicine. 2021;8. [DOI:10.3389/fcvm.2021.716213] [PMID] []
64. Bi Y, Wang Y, Wang Y, Wang Z, Sun L. Up-regulation of miR-208a aggravates high-fat -diet-induced cardiomyocytes injury by targeting IRS-2/PI3K/AKT pathway. Research Square Platform LLC; 2022. [DOI:10.21203/rs.3.rs-2375837/v1]
65. Sánchez-Ceinos J, Rangel-Zuñiga OA, Clemente-Postigo M, Podadera-Herreros A, Camargo A, Alcalá-Diaz JF, et al. miR-223-3p as a potential biomarker and player for adipose tissue dysfunction preceding type 2 diabetes onset. Mol Ther Nucleic Acids. 2021;23:1035-52. [DOI:10.1016/j.omtn.2021.01.014] [PMID] []
66. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proceedings of the National Academy of Sciences. 2014;111:14518-23. [DOI:10.1073/pnas.1215767111] [PMID] []
67. Ye D, Zhang T, Lou G, Liu Y. Role of miR-223 in the pathophysiology of liver diseases. Experimental & Molecular Medicine. 2018;50:1-12. [DOI:10.1038/s12276-018-0153-7] [PMID] []
68. Kurtz CL, Fannin EE, Toth CL, Pearson DS, Vickers KC, Sethupathy P. Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Scientific Reports. 2015;5:12911. [DOI:10.1038/srep12911] [PMID] []
69. Dalgaard LT, Sørensen AE, Hardikar AA, Joglekar MV. The microRNA-29 family: role in metabolism and metabolic disease. American Journal of Physiology-Cell Physiology. 2022;323:C367-C77. [DOI:10.1152/ajpcell.00051.2022] [PMID]
70. Chu M, Zhao Y, Feng Y, Zhang H, Liu J, Cheng M, et al. MicroRNA-126 participates in lipid metabolism in mammary epithelial cells. Molecular and Cellular Endocrinology. 2017;454:77-86. [DOI:10.1016/j.mce.2017.05.039] [PMID]
71. Mishra S, Rizvi A, Pradhan A, Perrone MA, Ali W. Circulating microRNA-126 &122 in patients with coronary artery disease: Correlation with small dense LDL. Prostaglandins & Other Lipid Mediators. 2021;153:106536. [DOI:10.1016/j.prostaglandins.2021.106536] [PMID]
72. Gupta SK, Garg A, Avramopoulos P, Engelhardt S, Streckfuss-Bömeke K, Batkai S, et al. miR-212/132 Cluster Modulation Prevents Doxorubicin-Mediated Atrophy and Cardiotoxicity. Molecular Therapy. 2019;27:17-28. [DOI:10.1016/j.ymthe.2018.11.004] [PMID] []
73. Upasana S, Nithin T, Theresa G, Alan D, Raymond FN. Insights into Insulin-Mediated Regulation of CYP2E1: miR-132/-212 Targeting of CYP2E1 and Role of Phosphatidylinositol 3-Kinase, Akt (Protein Kinase B), Mammalian Target of Rapamycin Signaling in Regulating miR-132/-212 and miR-122/-181a Expression in Primary Cultured Rat Hepatocytes. Drug Metabolism and Disposition. 2013;41:1769. [DOI:10.1124/dmd.113.052860] [PMID] []
74. Hanin G, Yayon N, Tzur Y, Haviv R, Bennett ER, Udi S, et al. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut. 2018;67:1124-34. [DOI:10.1136/gutjnl-2016-312869] [PMID] []
75. Gupta SK, Garg A, Avramopoulos P, Engelhardt S, Streckfuss-Bömeke K, Batkai S, et al. miR-212/132 Cluster Modulation Prevents Doxorubicin-Mediated Atrophy and Cardiotoxicity. Mol Ther. 2019;27:17-28. [DOI:10.1016/j.ymthe.2018.11.004] [PMID] []
76. Chen H, Gao J, Xu Q, Wan D, Zhai W, Deng L, et al. MiR-145-5p modulates lipid metabolism and M2 macrophage polarization by targeting PAK7 and regulating β-catenin signaling in hyperlipidemia. Canadian Journal of Physiology and Pharmacology. 2021;99:857-63. [DOI:10.1139/cjpp-2020-0539] [PMID]
77. Ghorbani S, Sezavar SH, Bokharaei-Salim F, Ataei-Pirkooh A, Tavakoli A, Javanmard D, et al. Expression levels of miR-22, miR-30c, miR-145, and miR-519d and their possible associations with inflammatory markers among patients with coronary artery disease. ARYA Atherosclerosis Journal. 2022;18:1-10.
78. Qin B, Xiao B, Liang D, Li Y, Jiang T, Yang H. MicroRNA let-7c inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis. BMB Rep. 2012;45:464-9. [DOI:10.5483/BMBRep.2012.45.8.033] [PMID]
79. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476-87. [DOI:10.1161/CIRCRESAHA.108.185363] [PMID] []
80. Doherty TA, Broide DH. Lipid regulation of group 2 innate lymphoid cell function: Moving beyond epithelial cytokines. J Allergy Clin Immunol. 2018;141:1587-9. [DOI:10.1016/j.jaci.2018.02.034] [PMID] []
81. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Molecular Medicine. 2013;5:1017-34. [DOI:10.1002/emmm.201202318] [PMID] []
82. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. Journal of Clinical Investigation. 2012;122:4190-202. [DOI:10.1172/JCI61716] [PMID] []
83. Magenta A, Ciarapica R, Capogrossi MC. The Emerging Role of miR-200 Family in Cardiovascular Diseases. Circulation Research. 2017;120:1399-402. [DOI:10.1161/CIRCRESAHA.116.310274] [PMID]
84. Li Y, Song Y-H, Li F, Yang T, Lu YW, Geng Y-J. microRNA-221 regulates high glucose-induced endothelial dysfunction. Biochemical and Biophysical Research Communications. 2009;381:81-3. [DOI:10.1016/j.bbrc.2009.02.013] [PMID] []
85. Horie T, Baba O, Kuwabara Y, Chujo Y, Watanabe S, Kinoshita M, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. J Am Heart Assoc. 2012;1:e003376. [DOI:10.1161/JAHA.112.003376] [PMID] []
86. Long JK, Dai W, Zheng YW, Zhao SP. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med. 2019;25:26. [DOI:10.1186/s10020-019-0085-2] [PMID] []
87. Shan Z, Qin S, Li W, Wu W, Yang J, Chu M, et al. An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells: Role of MicroRNA-223 in Smooth Muscle Function and Atherogenesis. J Am Coll Cardiol. 2015;65:2526-37. [DOI:10.1016/j.jacc.2015.03.570] [PMID] []
88. Santulli G. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. Adv Exp Med Biol. 2015;887:53-77. [DOI:10.1007/978-3-319-22380-3_4] [PMID] []
89. Aryal B, Singh AK, Rotllan N, Price N, Fernández-Hernando C. MicroRNAs and lipid metabolism. Curr Opin Lipidol. 2017;28:273-80. [DOI:10.1097/MOL.0000000000000420] [PMID] []
90. Sekikawa A, Shin C, Curb JD, Barinas-Mitchell E, Masaki K, El-Saed A, et al. Aortic stiffness and calcification in men in a population-based international study. Atherosclerosis. 2012;222:473-7. [DOI:10.1016/j.atherosclerosis.2012.03.027] [PMID] []
91. Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci. 2021;1495:55-77. [DOI:10.1111/nyas.14566] [PMID] []
92. Wen J, Friedman JR. miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest. 2012;122:2773-6. [DOI:10.1172/JCI63966] [PMID] []
93. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure. Circulation. 2011;124:1537-47. [DOI:10.1161/CIRCULATIONAHA.111.030932] [PMID] []
94. Huang XH, Li JL, Li XY, Wang SX, Jiao ZH, Li SQ, et al. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med. 2021;8:773314. [DOI:10.3389/fcvm.2021.773314] [PMID] []
95. Grosskopf I, Shaish A, Afek A, Shemesh S, Harats D, Kamari Y. Apolipoprotein A-V modulates multiple atherogenic mechanisms in a mouse model of disturbed clearance of triglyceride-rich lipoproteins. Atherosclerosis. 2012;224:75-83. [DOI:10.1016/j.atherosclerosis.2012.04.011] [PMID]
96. Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage "foam" cells: Implications for atherosclerosis. World J Cardiol. 2020;12:303-33. [DOI:10.4330/wjc.v12.i7.303] [PMID] []
97. Nguyen MA, Hoang HD, Rasheed A, Duchez AC, Wyatt H, Cottee ML, et al. miR-223 Exerts Translational Control of Proatherogenic Genes in Macrophages. Circ Res. 2022;131:42-58. [DOI:10.1161/CIRCRESAHA.121.319120] [PMID] []
98. Dai S, Yuan F, Mu J, Li C, Chen N, Guo S, et al. Chronic AMD3100 antagonism of SDF-1alpha-CXCR4 exacerbates cardiac dysfunction and remodeling after myocardial infarction. J Mol Cell Cardiol. 2010;49:587-97. [DOI:10.1016/j.yjmcc.2010.07.010] [PMID] []
99. Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat Commun. 2017;8:1614. [DOI:10.1038/s41467-017-01737-4] [PMID] []
100. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027-32. [DOI:10.1073/pnas.0805038105] [PMID] []
101. Yu B, Jiang Y, Wang X, Wang S. An integrated hypothesis for miR-126 in vascular disease. Med Res Arch. 2020;8. [DOI:10.18103/mra.v8i5.2133] [PMID] []
102. Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 2016;97:47-55. [DOI:10.1016/j.yjmcc.2016.05.007] [PMID]
103. Saeed O, Otsuka F, Polavarapu R, Karmali V, Weiss D, Davis T, et al. Pharmacological Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32:299-307. [DOI:10.1161/ATVBAHA.111.240101] [PMID] []
104. Williams PT, Thompson PD. Walking Versus Running for Hypertension, Cholesterol, and Diabetes Mellitus Risk Reduction. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33:1085-91. [DOI:10.1161/ATVBAHA.112.300878] [PMID] []
105. Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol. 2021;12:751487. [DOI:10.3389/fphar.2021.751487] [PMID] []
106. Choi YY, Kim A, Lee Y, Lee YH, Park M, Shin E, et al. The miR-126-5p and miR-212-3p in the extracellular vesicles activate monocytes in the early stage of radiation-induced vascular inflammation implicated in atherosclerosis. J Extracell Vesicles. 2023;12:e12325. [DOI:10.1002/jev2.12325] [PMID] []
107. Nemecz M, Alexandru N, Tanko G, Georgescu A. Role of MicroRNA in Endothelial Dysfunction and Hypertension. Curr Hypertens Rep. 2016;18:87. [DOI:10.1007/s11906-016-0696-8] [PMID] []
108. Yeh Y-T, Wei J, Thorossian S, Nguyen K, Hoffman C, del Álamo JC, et al. MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells. Biomaterials. 2019;204:59-69. [DOI:10.1016/j.biomaterials.2019.03.003] [PMID] []
109. Song Z, Li G. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury. J Cardiovasc Transl Res. 2010;3:246-50. [DOI:10.1007/s12265-010-9163-0] [PMID] []
110. Barwari T, Rienks M, Mayr M. MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Mol Ther. 2018;26:938-40. [DOI:10.1016/j.ymthe.2018.03.005] [PMID] []
111. Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:e159-e70. [DOI:10.1161/ATVBAHA.118.310227] []
112. Zampetaki A, Mayr M, Rooij Ev. MicroRNAs in Vascular and Metabolic Disease. Circulation Research. 2012;110:508-22. [DOI:10.1161/CIRCRESAHA.111.247445] [PMID]
113. Bruen R, Fitzsimons S, Belton O. miR-155 in the Resolution of Atherosclerosis. Front Pharmacol. 2019;10:463. [DOI:10.3389/fphar.2019.00463] [PMID] []
114. Ye J, Guo R, Shi Y, Qi F, Guo C, Yang L. miR-155 Regulated Inflammation Response by the SOCS1-STAT3-PDCD4 Axis in Atherogenesis. Mediators Inflamm. 2016;2016:8060182. [DOI:10.1155/2016/8060182] [PMID] []
115. Wang X, Sundquist J, Zöller B, Memon AA, Palmér K, Sundquist K, et al. Determination of 14 circulating microRNAs in Swedes and Iraqis with and without diabetes mellitus type 2. PLoS One. 2014;9:e86792. [DOI:10.1371/journal.pone.0086792] [PMID] []
116. Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet. 2006;38:1452-6. [DOI:10.1038/ng1910] [PMID]
117. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376-85. [DOI:10.1038/nrm1644] [PMID]
118. Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet. 2008;74:307-15. [DOI:10.1111/j.1399-0004.2008.01075.x] [PMID]
119. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215-33. [DOI:10.1016/j.cell.2009.01.002] [PMID] []
120. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206-16. [DOI:10.1161/ATVBAHA.114.303425] [PMID] []
121. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nature Reviews Drug Discovery. 2021;20:629-51. [DOI:10.1038/s41573-021-00219-z] [PMID] []
122. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860-7. [DOI:10.1038/nature05485] [PMID]
123. Libby P. Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32:2045-51. [DOI:10.1161/ATVBAHA.108.179705] [PMID] []
124. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14:133-44. https://doi.org/10.1038/nrcardio.2017.33 [DOI:10.1038/nrcardio.2016.185]
125. Kullo IJ, Cooper LT. Early identification of cardiovascular risk using genomics and proteomics. Nat Rev Cardiol. 2010;7:309-17. [DOI:10.1038/nrcardio.2010.53] [PMID] []
126. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil Trandolapril Study (INVEST): a randomized controlled trial. Jama. 2003;290:2805-16. [DOI:10.1001/jama.290.21.2805] [PMID]
127. Ohashi W, Hattori Y. Chapter 44 - Drugs that Affect Lipid Metabolism. In: Ray SD, editor. Side Effects of Drugs Annual: Elsevier; 2014. p. 675-82. [DOI:10.1016/B978-0-444-63407-8.00044-7]
128. Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med. 2021;8:809580. [DOI:10.3389/fcvm.2021.809580] [PMID] []
129. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483-95. [DOI:10.1161/CIRCRESAHA.111.247452] [PMID]
130. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677-84. [DOI:10.1161/CIRCRESAHA.109.215566] [PMID]
131. Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, et al. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation. 2013;127:1609-19. [DOI:10.1161/CIRCULATIONAHA.112.000736] [PMID]
132. Wang H, Cai J. The role of microRNAs in heart failure. Biochim Biophys Acta Mol Basis Dis. 2017;1863:2019-30. [DOI:10.1016/j.bbadis.2016.11.034] [PMID]
133. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104:1604-9. [DOI:10.1073/pnas.0610731104] [PMID] []
134. Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189-201. [DOI:10.1084/jem.20101823] [PMID] []
135. Gao Y, Wang B, Shen C, Xin W. Overexpression of miR 146a blocks the effect of LPS on RANKL induced osteoclast differentiation. Mol Med Rep. 2018;18:5481-8. [DOI:10.3892/mmr.2018.9610] [PMID] []
136. Dong S, Ma W, Hao B, Hu F, Yan L, Yan X, et al. microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by up-regulating Bcl-2. Int J Clin Exp Pathol. 2014;7:565-74.
137. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O'Leary JJ, Ruan Q, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141-7. [DOI:10.1038/ni.1828] [PMID]
138. Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009;8:712-5. [DOI:10.4161/cc.8.5.7753] [PMID]
139. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469:336-42. [DOI:10.1038/nature09783] [PMID] []
140. Romaine SP, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart. 2015;101:921-8. [DOI:10.1136/heartjnl-2013-305402] [PMID] []
141. Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107-21. [DOI:10.1016/j.yjmcc.2016.03.015] [PMID]
142. Zhou S-s, Jin J-p, Wang J-q, Zhang Z-g, Freedman JH, Zheng Y, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacologica Sinica. 2018;39:1073-84. [DOI:10.1038/aps.2018.30] [PMID] []
143. Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222:314-23. [DOI:10.1016/j.atherosclerosis.2012.01.020] [PMID]
144. Cordeiro JM, Zeina T, Goodrow R, Kaplan AD, Thomas LM, Nesterenko VV, et al. Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. Journal of Molecular and Cellular Cardiology. 2015;84:52-60. [DOI:10.1016/j.yjmcc.2015.04.010] [PMID] []
145. Zhou C, Zhao L, Wang K, Qi Q, Wang M, Yang L, et al. MicroRNA-146a inhibits NF-κB activation and pro-inflammatory cytokine production by regulating IRAK1 expression in THP-1 cells. Exp Ther Med. 2019;18:3078-84. [DOI:10.3892/etm.2019.7881] [PMID] []
146. Zhou S, Sun Y, Zhao K, Gao Y, Cui J, Qi L, et al. miR 21/PTEN pathway mediates the cardioprotection of geniposide against oxidized low density lipoprotein induced endothelial injury via suppressing oxidative stress and inflammatory response. Int J Mol Med. 2020;45:1305-16. [DOI:10.3892/ijmm.2020.4520] [PMID] []
147. Marques-da-Silva D, Gutierrez-Merino C. L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano- transducer within lipid rafts. Biochemical and Biophysical Research Communications. 2012;420:257-62. [DOI:10.1016/j.bbrc.2012.02.145] [PMID]
148. Yan S, Wang M, Zhao J, Zhang H, Zhou C, Jin L, et al. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int J Mol Med. 2016;38:201-9. [DOI:10.3892/ijmm.2016.2618] [PMID] []
149. Zhou L, Zheng D, Song X, Zhu J, Qi W, Ding S, et al. Alternated mRNA expression of the genes in chromosome 9p21 is associated with coronary heart disease and genetic variants in chromosome 9p21. Thromb Res. 2019;178:17-9. [DOI:10.1016/j.thromres.2019.03.020] [PMID]
150. Abbate R, Sticchi E, Fatini C. Genetics of cardiovascular disease. Clin Cases Miner Bone Metab. 2008;5:63-6. [DOI:10.1016/S0939-4753(08)70122-4]
151. Heimlich JB, Bick AG. Somatic Mutations in Cardiovascular Disease. Circulation Research. 2022;130:149-61. [DOI:10.1161/CIRCRESAHA.121.319809] [PMID] []
152. Arsov T, Miladinova D, Spiroski M. Factor V Leiden is associated with higher risk of deep venous thrombosis of large blood vessels. Croat Med J. 2006;47:433-9.
153. Jadaon MM. Epidemiology of Prothrombin G20210A Mutation in the Mediterranean Region. Mediterr J Hematol Infect Dis. 2011;3:e2011054. [DOI:10.4084/mjhid.2011.054] [PMID] []
154. Sandrock K, Knöfler R, Greinacher A, Fürll B, Gerisch S, Schuler U, et al. Novel Mutation in Bernard-Soulier Syndrome. Transfus Med Hemother. 2010;37:278-84. [DOI:10.1159/000320255] [PMID] []
155. Deng W, Voos KM, Li R. A new redox switch regulating von Willebrand factor activity. Journal of Thrombosis and Haemostasis. 2018;16:1257-8. [DOI:10.1111/jth.14147] [PMID] []
156. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007;120 Suppl 1:S5-9. [DOI:10.1016/j.thromres.2007.03.011] [PMID] []
157. Leebeek FWG. A prothrombotic von Willebrand factor variant. Blood. 2019;133:288-9. [DOI:10.1182/blood-2018-11-883488] [PMID]
158. Susilo H, Pikir BS, Thaha M, Alsagaff MY, Suryantoro SD, Wungu CDK, et al. The Effect of Angiotensin Converting Enzyme (ACE) I/D Polymorphism on Atherosclerotic Cardiovascular Disease and Cardiovascular Mortality Risk in Non-Hemodialyzed Chronic Kidney Disease: The Mediating Role of Plasma ACE Level. Genes (Basel). 2022;13. [DOI:10.20944/preprints202204.0233.v1]
159. Tahir A, Martinez PJ, Ahmad F, Fisher-Hoch SP, McCormick J, Gay JL, et al. An evaluation of lipid profile and pro-inflammatory cytokines as determinants of cardiovascular disease in those with diabetes: a study on a Mexican American cohort. Scientific Reports. 2021;11:2435. https://doi.org/10.1038/s41598-021-81730-6 [DOI:10.1038/s41598-021-93445-9] [PMID] []
160. Yuepeng J, Zhao X, Zhao Y, Li L. Gene polymorphism associated with TNF-α (G308A) IL-6 (C174G) and susceptibility to coronary atherosclerotic heart disease: A meta-analysis. Medicine (Baltimore). 2019;98:e13813. [DOI:10.1097/MD.0000000000013813] [PMID] []
161. Mirzaei S, Burke L, Rosenfeld AG, Dunn S, Dungan JR, Maki K, et al. Protein Cytokines, Cytokine Gene Polymorphisms, and Potential Acute Coronary Syndrome Symptoms. Biol Res Nurs. 2019;21:552-63. [DOI:10.1177/1099800419857819] [PMID] []
162. Buttar HS, Li T, Ravi N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol. 2005;10:229-49.
163. Kolber MR, Scrimshaw C. Family history of cardiovascular disease. Can Fam Physician. 2014;60:1016.
164. Windecker S, Piccolo R, Ueki Y. Long-Term Assessment of Bioresorbable Coronary Scaffolds: Disappearing Stents, Reappearing Atherosclerosis∗. Journal of the American College of Cardiology. 2018;71:1894-6. [DOI:10.1016/j.jacc.2018.03.007] [PMID]
165. Hynninen Y, Linna M, Vilkkumaa E. Value of genetic testing in the prevention of coronary heart disease events. PLoS One. 2019;14:e0210010. [DOI:10.1371/journal.pone.0210010] [PMID] []
166. Arndt AK, MacRae CA. Genetic testing in cardiovascular diseases. Curr Opin Cardiol. 2014;29:235-40. [DOI:10.1097/HCO.0000000000000055] [PMID] []
167. Strianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, et al. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020;11. [DOI:10.3390/genes11070747] [PMID] []
168. Schrock AB, Welsh A, Chung JH, Pavlick D, Bernicker EH, Creelan BC, et al. Hybrid Capture-Based Genomic Profiling of Circulating Tumor DNA from Patients with Advanced Non-Small Cell Lung Cancer. Journal of Thoracic Oncology. 2019;14:255-64. [DOI:10.1016/j.jtho.2018.10.008] [PMID]
169. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding following major trauma: an updated European guideline. Crit Care. 2010;14:R52. [DOI:10.1186/cc8943] [PMID] []
170. Humphries SE, Ridker PM, Talmud PJ. Genetic Testing for Cardiovascular Disease Susceptibility: A Useful Clinical Management Tool or Possible Misinformation? Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24:628-36. [DOI:10.1161/01.ATV.0000116216.56511.39] [PMID]
171. Jain KK. Personalized Management of Cardiovascular Disorders. Med Princ Pract. 2017;26:399-414. [DOI:10.1159/000481403] [PMID] []
172. Abell JG, Kivimäki M, Dugravot A, Tabak AG, Fayosse A, Shipley M, et al. Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. European Heart Journal. 2018;39:3119-25. [DOI:10.1093/eurheartj/ehy288] [PMID] []
173. Bhatnagar A. Environmental Determinants of Cardiovascular Disease. Circ Res. 2017;121:162-80. [DOI:10.1161/CIRCRESAHA.117.306458] [PMID] []
174. Lee JD, Schatz D, Hochman J. Cannabis and Heart Disease: Forward Into the Great Unknown?∗. Journal of the American College of Cardiology. 2018;71:2552-4. [DOI:10.1016/j.jacc.2018.03.010] [PMID]
175. Tomasson G, Monach PA, Merkel PA. Thromboembolic disease in vasculitis. Curr Opin Rheumatol. 2009;21:41-6. [DOI:10.1097/BOR.0b013e32831de4e7] [PMID] []
176. Jokubaitis M, Mineikytė R, Kryžauskaitė L, Gumbienė L, Kaplerienė L, Andruškevičius S, et al. Testing for Thrombophilia in Young Cryptogenic Stroke Patients: Does the Presence of Patent Foramen Ovale Make a Difference? Medicina. 2022;58:1056. [DOI:10.3390/medicina58081056] [PMID] []
177. Reich LM, Bower M, Key NS. Role of the geneticist in testing and counseling for inherited thrombophilia. Genetics in Medicine. 2003;5:133-43. [DOI:10.1097/01.GIM.0000067987.77803.D0] [PMID]
178. Leopold JA, Loscalzo J. Emerging Role of Precision Medicine in Cardiovascular Disease. Circ Res. 2018;122:1302-15. [DOI:10.1161/CIRCRESAHA.117.310782] [PMID] []
179. Krasi G, Precone V, Paolacci S, Stuppia L, Nodari S, Romeo F, et al. Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases. Acta Biomed. 2019;90:7-19.
180. Stienen S, Ferreira JP, Bär C, Thum T, Barros A, Pitt B, et al. Serum microRNAs and antifibrotic response to eplerenone in acute myocardial infarction complicated by systolic dysfunction. International Journal of Cardiology. 2021;332:35-7. [DOI:10.1016/j.ijcard.2021.02.088] [PMID]
181. Sze E, Daubert JP. Reply: Early Cardiac Resynchronization Therapy for Left Bundle Branch Block-Associated Cardiomyopathies. Journal of the American College of Cardiology. 2018;71:1945-6. [DOI:10.1016/j.jacc.2018.03.011] [PMID]
182. Liu S, Guo X, Zhong W, Weng R, Liu J, Gu X, et al. Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina. Clinics (Sao Paulo). 2020;75:e1546. [DOI:10.6061/clinics/2020/e1546] [PMID] []
183. Stratz C, Nührenberg TG, Binder H, Valina CM, Trenk D, Hochholzer W, et al. Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thromb Haemost. 2012;107:634-41. [DOI:10.1160/TH11-10-0742] [PMID]
184. Laffont B, Corduan A, Plé H, Duchez AC, Cloutier N, Boilard E, et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood. 2013;122:253-61. [DOI:10.1182/blood-2013-03-492801] [PMID]
185. Wu YX, Xu RY, Jiang L, Chen XY, Xiao XJ. MicroRNA-30a-5p Promotes Chronic Heart Failure in Rats by Targeting Sirtuin-1 to Activate the Nuclear Factor-κB/NOD-Like Receptor 3 Signaling Pathway. Cardiovasc Drugs Ther. 2022.
186. Xue J, K Xie V, Wang P, Cui J, Gao Y, Lu Z. Interrelationships of circulating tumor cells with metastasis and thrombosis: role of microRNAs. Current pharmaceutical design. 2014;20:5298-308. [DOI:10.2174/1381612820666140128220152] [PMID] []
187. Zhu J, Chen T, Yang L, Li Z, Wong MM, Zheng X, et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One. 2012;7:e46551. [DOI:10.1371/journal.pone.0046551] [PMID] []
188. Ma C, Peng P, Zhou Y, Liu T, Wang L, Lu C. MicroRNA 93 promotes angiogenesis and attenuates remodeling via inactivation of the Hippo/Yap pathway by targeting Lats2 after myocardial infarctionω. Mol Med Rep. 2020;22:483-93. [DOI:10.3892/mmr.2020.11085] [PMID] []
189. Xiao Y, Zhao J, Tuazon JP, Borlongan CV, Yu G. MicroRNA-133a and Myocardial Infarction. Cell Transplant. 2019;28:831-8. [DOI:10.1177/0963689719843806] [PMID] []
190. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med. 2012;18:1077-86. [DOI:10.1038/nm.2815] [PMID]
191. Goldberg AC, Hopkins PN, Toth PP, Ballantyne CM, Rader DJ, Robinson JG, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol. 2011;5:S1-8.
192. Subbaraj GK, Varghese S, Kulanthaivel L, Alagarsamy L, Rajaram S, Ramanathan S. Chapter 13 - Gene polymorphism and the risk of coronary artery disease. In: El-Baz AS, Suri JS, editors. Cardiovascular and Coronary Artery Imaging: Academic Press; 2022. p. 273-303. [DOI:10.1016/B978-0-12-822706-0.00013-5] [PMID]
193. Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C, Dalageorgou C, et al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet. 2013;50:228-39. [DOI:10.1136/jmedgenet-2012-101270] [PMID] []
194. Choi JC. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a genetic cause of cerebral small vessel disease. J Clin Neurol. 2010;6:1-9. [DOI:10.3988/jcn.2010.6.1.1] [PMID] []
195. Kärkkäinen S, Peuhkurinen K. Genetics of dilated cardiomyopathy. Ann Med. 2007;39:91-107. [DOI:10.1080/07853890601145821] [PMID]
196. Wilde AA, Bezzina CR. Genetics of cardiac arrhythmias. Heart. 2005;91:1352-8. [DOI:10.1136/hrt.2004.046334] [PMID] []
197. Ramanujam D, Schön AP, Beck C, Vaccarello P, Felician G, Dueck A, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation. 2021;143:1513-25. [DOI:10.1161/CIRCULATIONAHA.120.050682] [PMID] []
198. Sassi Y, Avramopoulos P, Ramanujam D, Grüter L, Werfel S, Giosele S, et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nature communications. 2017;8:1614. [DOI:10.1038/s41467-017-01737-4] [PMID] []
199. Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. The Journal of Clinical Investigation. 2022;132. [DOI:10.1172/JCI159179] [PMID] []
200. Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circulation research. 2012;111:415-25. [DOI:10.1161/CIRCRESAHA.112.267443] [PMID]
201. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-4. [DOI:10.1038/nature07511] [PMID]
202. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272-84. [DOI:10.1016/j.devcel.2008.07.008] [PMID] []
203. [203] Chin DD, Poon C, Wang J, Joo J, Ong V, Jiang Z, et al. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials. 2021;273:120810. [DOI:10.1016/j.biomaterials.2021.120810] [PMID] []
204. Rachmawati E, Sargowo D, Rohman MS, Widodo N, Kalsum U. miR-155-5p predictive role to decelerate foam cell atherosclerosis through CD36, VAV3, and SOCS1 pathway. Noncoding RNA Res. 2021;6:59-69. [DOI:10.1016/j.ncrna.2021.02.003] [PMID] []
205. Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570-3. [DOI:10.1126/science.1189862] [PMID] []
206. van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nature Reviews Drug Discovery. 2012;11:860-72. [DOI:10.1038/nrd3864] [PMID] []
207. Vasegh R, Ebtekar M, Shafiee Ardestani M, Gholamzad M. Comparison of Humoral and Cell-Mediated Immune Response to Tetanustoxin Coated PLGA in Mice. mdrsjrns. 2018;22:7-19.
208. Gholamzad M, Baharlooi H, Shafiee Ardestani M, Seyedkhan Z, Azimi M. Prophylactic and Therapeutic Effects of MOG-Conjugated PLGA Nanoparticles in C57Bl/6 Mouse Model of Multiple Sclerosis. Adv Pharm Bull. 2021;11:505-13. [DOI:10.34172/apb.2021.058] [PMID] []
209. Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Molecular Therapy-Nucleic Acids. 2015;4. [DOI:10.1038/mtna.2015.23] [PMID] []
210. Michell DL, Vickers KC. HDL and microRNA therapeutics in cardiovascular disease. Pharmacology & therapeutics. 2016;168:43-52. [DOI:10.1016/j.pharmthera.2016.09.001] [PMID] []
211. Turunen MP, Aavik E, Ylä-Herttuala S. Epigenetics and atherosclerosis. Biochimica et Biophysica Acta (BBA)-General Subjects. 2009;1790:886-91. [DOI:10.1016/j.bbagen.2009.02.008] [PMID]
212. Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proceedings of the Nutrition Society. 2011;70:47-56. [DOI:10.1017/S0029665110003952] [PMID]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: none



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholamzad A, Moulaeian M, Khatibi M, Nourikhani M, Gholamzad M, Goudarzi Y. Decoding the Interplay of Genes and MicroRNAs in Cardiovascular Disease. jhgg 2023; 7 (1)
URL: http://humangeneticsgenomics.ir/article-1-93-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 1 (5-2023) Back to browse issues page
Journal of Human Genetics and Genomics Journal of Human Genetics and Genomics
Persian site map - English site map - Created in 0.2 seconds with 37 queries by YEKTAWEB 4660